Suppr超能文献

工作记忆的认知神经科学

The cognitive neuroscience of working memory.

作者信息

D'Esposito Mark, Postle Bradley R

机构信息

Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California 94720; email:

出版信息

Annu Rev Psychol. 2015 Jan 3;66:115-42. doi: 10.1146/annurev-psych-010814-015031. Epub 2014 Sep 19.

Abstract

For more than 50 years, psychologists and neuroscientists have recognized the importance of a working memory to coordinate processing when multiple goals are active and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory by allocating attention to internal representations, whether semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking memory contexts. The prefrontal cortex (PFC), on the other hand, exerts control over behavior by biasing the salience of mnemonic representations and adjudicating among competing, context-dependent rules. The "control of the controller" emerges from a complex interplay between PFC and striatal circuits and ascending dopaminergic neuromodulatory signals.

摘要

五十多年来,心理学家和神经科学家已经认识到工作记忆在协调多个目标同时活跃时的处理过程以及利用当前环境中不存在的信息指导行为方面的重要性。近年来,心理学理论和认知神经科学数据都趋向于这样一种观点,即通过将注意力分配到内部表征(无论是语义长期记忆,如字母、数字、单词,还是感觉或运动表征),信息被编码到工作记忆中。因此,基于信息的人类功能磁共振成像数据的多变量分析通常会在那些在非工作记忆情境中也处理这些信息的区域找到刺激临时表征的证据。另一方面,前额叶皮层(PFC)通过使记忆表征的显著性产生偏差并在相互竞争的、依赖于情境的规则之间进行裁决来对行为施加控制。“控制器的控制”源于PFC与纹状体回路以及上行多巴胺能神经调节信号之间复杂的相互作用。

相似文献

1
The cognitive neuroscience of working memory.
Annu Rev Psychol. 2015 Jan 3;66:115-42. doi: 10.1146/annurev-psych-010814-015031. Epub 2014 Sep 19.
2
The Representational Basis of Working Memory.
Curr Top Behav Neurosci. 2018;37:213-230. doi: 10.1007/7854_2016_456.
3
Role of prefrontal cortex and the midbrain dopamine system in working memory updating.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):19900-9. doi: 10.1073/pnas.1116727109. Epub 2012 Oct 18.
4
From cognitive to neural models of working memory.
Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):761-72. doi: 10.1098/rstb.2007.2086.
5
Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory.
J Neurosci. 2021 Mar 3;41(9):2012-2023. doi: 10.1523/JNEUROSCI.1783-20.2020. Epub 2021 Jan 18.
7
Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
J Neurophysiol. 2000 Mar;83(3):1733-50. doi: 10.1152/jn.2000.83.3.1733.
8
Top-down modulation: bridging selective attention and working memory.
Trends Cogn Sci. 2012 Feb;16(2):129-35. doi: 10.1016/j.tics.2011.11.014. Epub 2011 Dec 28.

引用本文的文献

5
Cost of maintaining attentional templates for multiple colors revealed by EEG decoding.
Imaging Neurosci (Camb). 2025 May 2;3. doi: 10.1162/imag_a_00563. eCollection 2025.
6
Meta-modeling the effects of anodal left prefrontal transcranial direct current stimulation on working memory performance.
Imaging Neurosci (Camb). 2024 Jan 25;2. doi: 10.1162/imag_a_00078. eCollection 2024.
7
Near-random connections support top-down feature-based attentional modulations in early sensory cortex.
PLoS Comput Biol. 2025 Aug 12;21(8):e1013396. doi: 10.1371/journal.pcbi.1013396. eCollection 2025 Aug.
8
Effects of screen-based task learning and geographical environment on the cognitive performance of primary school students: Assessment of working memory.
Brain Neurosci Adv. 2025 Jul 23;9:23982128251356029. doi: 10.1177/23982128251356029. eCollection 2025 Jan-Dec.
9
Distinct neural mechanisms of alpha binaural beats and white noise for cognitive enhancement in young adults.
AIMS Neurosci. 2025 May 20;12(2):147-179. doi: 10.3934/Neuroscience.2025010. eCollection 2025.

本文引用的文献

2
Changing concepts of working memory.
Nat Neurosci. 2014 Mar;17(3):347-56. doi: 10.1038/nn.3655. Epub 2014 Feb 25.
3
Revisiting the role of persistent neural activity during working memory.
Trends Cogn Sci. 2014 Feb;18(2):82-9. doi: 10.1016/j.tics.2013.12.001. Epub 2014 Jan 14.
4
Distributed and dynamic storage of working memory stimulus information in extrastriate cortex.
J Cogn Neurosci. 2014 May;26(5):1141-53. doi: 10.1162/jocn_a_00556. Epub 2014 Jan 6.
5
Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information?
Trends Cogn Sci. 2014 Jan;18(1):16-25. doi: 10.1016/j.tics.2013.10.010. Epub 2013 Nov 19.
6
The focus of attention in working memory-from metaphors to mechanisms.
Front Hum Neurosci. 2013 Oct 17;7:673. doi: 10.3389/fnhum.2013.00673. eCollection 2013.
7
Testing the model of caudo-rostral organization of cognitive control in the human with frontal lesions.
Neuroimage. 2014 Jan 1;84:1053-60. doi: 10.1016/j.neuroimage.2013.09.031. Epub 2013 Sep 21.
8
Dopaminergic modulation of working memory for spatial but not object cues in normal humans.
J Cogn Neurosci. 1997 May;9(3):330-47. doi: 10.1162/jocn.1997.9.3.330.
9
Sensory processing: who's in (top-down) control?
Ann N Y Acad Sci. 2013 Aug;1296:88-107. doi: 10.1111/nyas.12204. Epub 2013 Aug 2.
10
Working memory management and predicted utility.
Front Behav Neurosci. 2013 Jul 17;7:83. doi: 10.3389/fnbeh.2013.00083. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验