Suppr超能文献

比较结合能分析用于结合亲和力和靶标选择性预测。

Comparative binding energy analysis for binding affinity and target selectivity prediction.

机构信息

Molecular and Cellular Modeling Group, EML Research, Heidelberg, Germany.

出版信息

Proteins. 2010 Jan;78(1):135-53. doi: 10.1002/prot.22579.

Abstract

A major challenge in drug design is to obtain compounds that bind selectively to their target receptors and do not cause side-effects by binding to other similar receptors. Here, we investigate strategies for applying COMBINE (COMparative BINding Energy) analysis, in conjunction with PIPSA (Protein Interaction Property Similarity Analysis) and ligand docking methods, to address this problem. We evaluate these approaches by application to diverse sets of inhibitors of three structurally related serine proteases of medical relevance: thrombin, trypsin, and urokinase-type plasminogen activator (uPA). We generated target-specific scoring functions (COMBINE models) for the three targets using training sets of ligands with known inhibition constants and structures of their receptor-ligand complexes. These COMBINE models were compared with the PIPSA results and experimental data on receptor selectivity. These scoring functions highlight the ligand-receptor interactions that are particularly important for binding specificity for the different targets. To predict target selectivity in virtual screening, compounds were docked into the three protein binding sites using the program GOLD and the docking solutions were re-ranked with the target-specific scoring functions and computed electrostatic binding free energies. Limits in the accuracy of some of the docking solutions and difficulties in scoring them adversely affected the predictive ability of the target specific scoring functions. Nevertheless, the target-specific scoring functions enabled the selectivity of ligands to thrombin versus trypsin and uPA to be predicted.

摘要

药物设计的一个主要挑战是获得选择性地与目标受体结合的化合物,并且不会通过与其他类似受体结合而产生副作用。在这里,我们研究了应用 COMBINE(比较结合能)分析的策略,结合 PIPSA(蛋白质相互作用特性相似性分析)和配体对接方法,来解决这个问题。我们通过将抑制剂应用于三种结构相关的丝氨酸蛋白酶(凝血酶、胰蛋白酶和尿激酶型纤溶酶原激活物(uPA))的不同抑制剂集来评估这些方法。我们使用具有已知抑制常数和受体-配体复合物结构的配体训练集为三个靶标生成了针对特定靶标的评分函数(COMBINE 模型)。将这些 COMBINE 模型与 PIPSA 结果和受体选择性的实验数据进行了比较。这些评分函数突出了对不同靶标结合特异性特别重要的配体-受体相互作用。为了在虚拟筛选中预测靶标选择性,使用程序 GOLD 将化合物对接入三个蛋白质结合位点,并使用针对特定靶标的评分函数和计算的静电结合自由能重新对对接解决方案进行排名。一些对接解决方案的准确性存在限制,并且对它们进行评分的困难对特定靶标的评分函数的预测能力产生了不利影响。尽管如此,针对特定靶标的评分函数能够预测凝血酶与胰蛋白酶和 uPA 的选择性配体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验