Suppr超能文献

蛋白质-配体、蛋白质-蛋白质和多组分蛋白质相互作用中的灵活性和结合亲和力:当前计算方法的局限性。

Flexibility and binding affinity in protein-ligand, protein-protein and multi-component protein interactions: limitations of current computational approaches.

机构信息

INSERM UMR-S 973, Université Paris Diderot, 35 rue Hélène Brion, 75251 Paris cedex, France.

出版信息

J R Soc Interface. 2012 Jan 7;9(66):20-33. doi: 10.1098/rsif.2011.0584. Epub 2011 Oct 12.

Abstract

The recognition process between a protein and a partner represents a significant theoretical challenge. In silico structure-based drug design carried out with nothing more than the three-dimensional structure of the protein has led to the introduction of many compounds into clinical trials and numerous drug approvals. Central to guiding the discovery process is to recognize active among non-active compounds. While large-scale computer simulations of compounds taken from a library (virtual screening) or designed de novo are highly desirable in the post-genomic area, many technical problems remain to be adequately addressed. This article presents an overview and discusses the limits of current computational methods for predicting the correct binding pose and accurate binding affinity. It also presents the performances of the most popular algorithms for exploring binary and multi-body protein interactions.

摘要

蛋白质与伴侣之间的识别过程是一个重大的理论挑战。仅仅基于蛋白质的三维结构进行基于结构的药物设计,已经导致许多化合物进入临床试验并获得了大量药物批准。指导发现过程的核心是识别活性化合物和非活性化合物。虽然在基因组后时代,从库中提取的化合物的大规模计算机模拟(虚拟筛选)或从头设计是非常理想的,但仍有许多技术问题需要解决。本文概述并讨论了当前预测正确结合构象和准确结合亲和力的计算方法的局限性。还介绍了用于探索二聚体和多聚体蛋白质相互作用的最流行算法的性能。

相似文献

3
Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery.
Curr Pharm Des. 2006;12(17):2099-110. doi: 10.2174/138161206777585247.
4
Scoring functions for prediction of protein-ligand interactions.
Curr Pharm Des. 2013;19(12):2174-82. doi: 10.2174/1381612811319120005.
5
Computational approach to de novo discovery of fragment binding for novel protein states.
Methods Enzymol. 2011;493:357-80. doi: 10.1016/B978-0-12-381274-2.00014-5.
6
Machine learning in computational docking.
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.
7
BDT: an easy-to-use front-end application for automation of massive docking tasks and complex docking strategies with AutoDock.
Bioinformatics. 2006 Jul 15;22(14):1803-4. doi: 10.1093/bioinformatics/btl197. Epub 2006 May 23.
8
Predicting key long-range interaction sites by B-factors.
Protein Pept Lett. 2008;15(5):478-83. doi: 10.2174/092986608784567573.
9
Hotspot-centric de novo design of protein binders.
J Mol Biol. 2011 Nov 11;413(5):1047-62. doi: 10.1016/j.jmb.2011.09.001. Epub 2011 Sep 10.
10
Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0.
J Comput Aided Mol Des. 2019 Dec;33(12):1083-1094. doi: 10.1007/s10822-019-00222-y. Epub 2019 Sep 10.

引用本文的文献

1
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
2
Therapeutic potential of against monkeypox: antioxidant, anti-inflammatory, and computational insights.
Front Chem. 2025 Jan 16;12:1509913. doi: 10.3389/fchem.2024.1509913. eCollection 2024.
4
Synthesis, antimicrobial activity and molecular docking study of benzyl functionalized benzimidazole silver(I) complexes.
J Biol Inorg Chem. 2023 Dec;28(8):725-736. doi: 10.1007/s00775-023-02024-y. Epub 2023 Nov 7.
5
Synergistic Inhibitory Effect of Quercetin and Cyanidin-3O-Sophoroside on ABCB1.
Int J Mol Sci. 2023 Jul 12;24(14):11341. doi: 10.3390/ijms241411341.
6
Surface ID: a geometry-aware system for protein molecular surface comparison.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad196.
7
Evaluation of immune evasion in SARS-CoV-2 Delta and Omicron variants.
Comput Struct Biotechnol J. 2022;20:4501-4516. doi: 10.1016/j.csbj.2022.08.010. Epub 2022 Aug 8.
8
Adequate prediction for inhibitor affinity of Aβ protofibril using the linear interaction energy method.
RSC Adv. 2019 Apr 23;9(22):12455-12461. doi: 10.1039/c9ra01177c. eCollection 2019 Apr 17.
9
Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation.
Methods Mol Biol. 2022;2340:175-196. doi: 10.1007/978-1-0716-1546-1_9.
10

本文引用的文献

1
Coarse-Grained MD Simulations and Protein-Protein Interactions: The Cohesin-Dockerin System.
J Chem Theory Comput. 2009 Sep 8;5(9):2465-71. doi: 10.1021/ct900140w.
2
What has computer-aided molecular design ever done for drug discovery?
Expert Opin Drug Discov. 2006 Jul;1(2):103-10. doi: 10.1517/17460441.1.2.103.
4
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9. doi: 10.1073/pnas.1103547108. Epub 2011 Jun 6.
5
Structural basis for Aβ1–42 toxicity inhibition by Aβ C-terminal fragments: discrete molecular dynamics study.
J Mol Biol. 2011 Jul 8;410(2):316-28. doi: 10.1016/j.jmb.2011.05.021. Epub 2011 May 23.
6
Monte Carlo study of the formation and conformational properties of dimers of Aβ42 variants.
J Mol Biol. 2011 Jul 8;410(2):357-67. doi: 10.1016/j.jmb.2011.05.014. Epub 2011 May 17.
7
How does a drug molecule find its target binding site?
J Am Chem Soc. 2011 Jun 22;133(24):9181-3. doi: 10.1021/ja202726y. Epub 2011 May 13.
8
SwissParam: a fast force field generation tool for small organic molecules.
J Comput Chem. 2011 Aug;32(11):2359-68. doi: 10.1002/jcc.21816. Epub 2011 May 3.
9
pyDockCG: new coarse-grained potential for protein-protein docking.
J Phys Chem B. 2011 May 19;115(19):6032-9. doi: 10.1021/jp112292b. Epub 2011 Apr 21.
10
Naproxen interferes with the assembly of Aβ oligomers implicated in Alzheimer's disease.
Biophys J. 2011 Apr 20;100(8):2024-32. doi: 10.1016/j.bpj.2011.02.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验