Crowley John J, Fioravante Diasynou, Regehr Wade G
Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
Neuron. 2009 Sep 24;63(6):843-53. doi: 10.1016/j.neuron.2009.09.004.
Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron class modifies activity in its targets. We find that GABA(A)-mediated transmission at unitary Golgi cell --> granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high-frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber --> granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing.
在整个大脑中,多种中间神经元类型影响突触处理的不同方面。中间神经元的多样性因此可以促进接受共同兴奋的神经元产生不同的放电。相比之下,高尔基细胞是调节苔藓纤维诱发颗粒细胞放电的唯一中间神经元,从而控制进入小脑皮质的输入。在这里,我们研究了这单一类型的中间神经元如何改变其靶细胞的活动。我们发现,在单个高尔基细胞→颗粒细胞突触处,GABA(A)介导的传递由快速突触电流和持续性抑制的不同贡献组成。在高频高尔基细胞活动期间,快速抑制性突触后电流(IPSCs)会衰减,而慢速IPSCs会逐渐增强。因此,在持续性苔藓纤维输入期间,快速和慢速抑制对颗粒细胞的放电时间有不同的影响。此外,慢速抑制降低了苔藓纤维→颗粒细胞输入-输出曲线的增益,而快速抑制则提高了阈值。因此,缺乏中间神经元多样性不一定会妨碍对突触处理进行灵活的抑制控制。