Menendez Javier A
Catalan Institute of Oncology (ICO)-Health Services Division of Catalonia, Dr. Josep Trueta University Hospital of Girona, Girona, Catalonia, Spain.
Biochim Biophys Acta. 2010 Mar;1801(3):381-91. doi: 10.1016/j.bbalip.2009.09.005. Epub 2009 Sep 24.
Evolving evidence suggest that metabolic requirements for cell proliferation are identical in all normal and cancer cells. HER2 oncogene-overexpressors, a highly aggressive subtype of human cancer cells, constitute one of the best examples of how malignant cells maximize their ability to acquire and metabolize nutrients in a manner conductive to proliferation rather than efficient ATP production. HER2-overexpressors optimize their requirements of rapid cancer cell growth by fine-tuning a double [lipogenic/lipolytic]-edged metabolic sword. On the one edge, HER2 oncogene overexpression triggers redundant signaling cascades to ensure that all the major enzymes involved in de novo fatty acid (FA) synthesis will facilitate aerobic glycolysis instead of oxidative phosphorylation for energy production (Warburg effect). HER2 also establishes a positive bidirectional relationship with the key lipogenic enzyme Fatty Acid Synthase (FASN) that rapidly senses and respond to any disturbance in the flux of lipogenic substrates (e.g. NADPH and acetyl-CoA) and lipogenesis end-products (i.e. palmitate). On the other edge, HER2 overexpression arranges detoxifying mechanisms by upregulating PPARgamma, a well established positive regulator role of adipogenesis and lipid storage in cell types with active lipid metabolism. PPARgamma establishes a lipogenesis/lipolysis joining-point that enables HER2-positive cancer cells to avoid endogenous palmitate toxicity while securing palmitate into fat stores to avoid palmitate feedback on FASN functioning. The ability of HER2 to supercharge lipogenesis (by activating regulatory circuits that activate and fuel the lipogenic enzyme FASN) while averting lipotoxicity (by promoting conversion and storage of excess FAs to triglycerides in a PPARgamma-dependent manner) supports the notion that best adapted cancer phenotypes are addicted to oncogenic lipid metabolism for cell proliferation and survival. It is conceptually attractive to assume that we can crash HER2-driven rapid cell proliferation by inhibiting "motor refueling" (upon blockade of lipogenic enzymes), by losing the "lipolytic brake" (upon blockade of PPARgamma) and/or by sticking the "lipogenic gas pedal" (upon supplementation with dietary FAs).
越来越多的证据表明,所有正常细胞和癌细胞对细胞增殖的代谢需求是相同的。HER2致癌基因过表达细胞是人类癌细胞中极具侵袭性的一种亚型,它很好地说明了恶性细胞如何以一种有利于增殖而非高效产生ATP的方式,最大化其获取和代谢营养物质的能力。HER2过表达细胞通过微调一把双(生脂/脂解)刃代谢剑,优化了其对癌细胞快速生长的需求。一方面,HER2致癌基因的过表达触发了冗余的信号级联反应,以确保参与从头合成脂肪酸(FA)的所有主要酶都能促进有氧糖酵解,而不是通过氧化磷酸化来产生能量(瓦伯格效应)。HER2还与关键的生脂酶脂肪酸合酶(FASN)建立了正向双向关系,该酶能快速感知并响应生脂底物(如NADPH和乙酰辅酶A)通量以及生脂终产物(即棕榈酸酯)的任何干扰。另一方面,HER2的过表达通过上调PPARγ来安排解毒机制,PPARγ在具有活跃脂质代谢的细胞类型中,对脂肪生成和脂质储存具有明确的正向调节作用。PPARγ建立了一个生脂/脂解连接点,使HER2阳性癌细胞能够避免内源性棕榈酸酯的毒性,同时将棕榈酸酯储存到脂肪库中,以避免棕榈酸酯对FASN功能的反馈。HER2增强脂肪生成的能力(通过激活激活并为生脂酶FASN提供燃料的调节回路),同时避免脂毒性(通过以PPARγ依赖的方式促进多余脂肪酸转化并储存为甘油三酯),支持了这样一种观点,即最适应的癌症表型依赖致癌性脂质代谢来实现细胞增殖和存活。从概念上讲,假设我们可以通过抑制“发动机加油”(阻断生脂酶)、失去“脂解刹车”(阻断PPARγ)和/或踩下“生脂油门”(补充膳食脂肪酸)来抑制HER2驱动的快速细胞增殖,这很有吸引力。