Heckman C J, Mottram Carol, Quinlan Kathy, Theiss Renee, Schuster Jenna
Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
Clin Neurophysiol. 2009 Dec;120(12):2040-2054. doi: 10.1016/j.clinph.2009.08.009. Epub 2009 Sep 27.
The excitability of spinal motoneurons is both fundamental for motor behavior and essential in diagnosis of neural disorders. There are two mechanisms for altering this excitability. The classic mechanism is mediated by synaptic inputs that depolarize or hyperpolarize motoneurons by generating postsynaptic potentials. This "ionotropic" mechanism works via neurotransmitters that open ion channels in the cell membrane. In the second mechanism, neurotransmitters bind to receptors that activate intracellular signaling pathways. These pathways modulate the properties of the voltage-sensitive channels that determine the intrinsic input-output properties of motoneurons. This "neuromodulatory" mechanism usually does not directly activate motoneurons but instead dramatically alters the neuron's response to ionotropic inputs. We present extensive evidence that neuromodulatory inputs exert a much more powerful effect on motoneuron excitability than ionotropic inputs. The most potent neuromodulators are probably serotonin and norepinephrine, which are released by axons originating in the brainstem and can increase motoneuron excitability fivefold or more. Thus, the standard tests of motoneuron excitability (H-reflexes, tendon taps, tendon vibration and stretch reflexes) are strongly influenced by the level of neuromodulatory input to motoneurons. This insight is likely to be profoundly important for clinical diagnosis and treatment.
脊髓运动神经元的兴奋性对于运动行为而言既是基础,在神经疾病诊断中也是至关重要的。改变这种兴奋性有两种机制。经典机制由突触输入介导,突触输入通过产生突触后电位使运动神经元去极化或超极化。这种“离子otropic”机制通过在细胞膜上打开离子通道的神经递质起作用。在第二种机制中,神经递质与激活细胞内信号通路的受体结合。这些通路调节电压敏感通道的特性,而电压敏感通道决定了运动神经元的内在输入-输出特性。这种“神经调节”机制通常不会直接激活运动神经元,而是显著改变神经元对离子otropic输入的反应。我们提供了大量证据表明,神经调节输入对运动神经元兴奋性的影响比离子otropic输入强大得多。最有效的神经调节剂可能是血清素和去甲肾上腺素,它们由源自脑干的轴突释放,可使运动神经元兴奋性提高五倍或更多。因此,运动神经元兴奋性的标准测试(H反射、腱反射、腱振动和牵张反射)受到运动神经元神经调节输入水平的强烈影响。这一见解可能对临床诊断和治疗具有极其重要的意义。