Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore.
Br J Pharmacol. 2009 Nov;158(5):1196-209. doi: 10.1111/j.1476-5381.2009.00387.x. Epub 2009 Sep 28.
Fibrosis, a pathological accumulation of collagen in tissues, represents a major global disease burden. Effective characterization of potential antifibrotic drugs has been constrained by poor formation of the extracellular matrix in vitro, due to tardy procollagen processing by collagen C-proteinase/BMP-1, and difficulties in relating this matrix to cell numbers in experimental samples.
The Scar-in-a-Jar model provided, in vitro, the complete biosynthetic cascade of collagen matrix formation including complete conversion of procollagen by C-proteinase/BMP-1, its subsequent extracellular deposition and lysyl oxidase-mediated cross-linking, achieved by applying the biophysical principle of macromolecular 'crowding'. Collagen matrix deposition, velocity and morphology can be controlled using negatively charged 'crowders' in a rapid (2 days) mode or a mixture of neutral 'crowders' in an accelerated (6 days) mode. Combined with quantitative optical bioimaging, this novel system allows for in situ assessment of the area of deposited collagen(s) per cell.
Optical evaluation of known and novel antifibrotic compounds effective at the epigenetic, post-transcriptional/translational/secretional level correlated excellently with corresponding biochemical analyses. Focusing on quantitation of deposited collagen, the Scar-in-a-Jar was most effective in assessing novel inhibitors that may have multiple targets, such as microRNA29c, found to be a promising antifibrotic agent.
This novel screening system supersedes current in vitro fibroplasia models, as a fast, quantitative and non-destructive technique. This method distinguishes a reduction in collagen I deposition, excluding collagen cross-linking, and allows full evaluation of inhibitors of C-proteinase/BMP-1 and other matrix metalloproteinases.
纤维化是组织中胶原的病理性积累,代表着全球主要的疾病负担。由于胶原 C 蛋白酶/BMP-1 对前胶原的加工缓慢,以及难以将这种基质与实验样本中的细胞数量联系起来,因此体外细胞外基质的形成较差,从而限制了潜在抗纤维化药物的有效特征描述。
Scar-in-a-Jar 模型在体外提供了完整的胶原基质形成的生物合成级联,包括 C 蛋白酶/BMP-1 对前胶原的完全转化,其随后的细胞外沉积和赖氨酰氧化酶介导的交联,通过应用大分子“拥挤”的生物物理原理来实现。可以使用带负电荷的“拥挤物”在快速(2 天)模式下或中性“拥挤物”的混合物在加速(6 天)模式下控制胶原基质的沉积、速度和形态。与定量光学生物成像相结合,这种新系统允许原位评估每个细胞沉积的胶原(s)面积。
对在表观遗传、转录后/翻译/分泌水平上有效的已知和新型抗纤维化化合物的光学评估与相应的生化分析非常吻合。聚焦于沉积胶原的定量,Scar-in-a-Jar 在评估可能具有多个靶点的新型抑制剂方面最为有效,例如 microRNA29c,它被发现是一种有前途的抗纤维化剂。
这种新的筛选系统取代了当前的体外成纤维细胞模型,成为一种快速、定量和非破坏性的技术。这种方法区分了 I 型胶原沉积的减少,排除了胶原交联,并允许对 C 蛋白酶/BMP-1 和其他基质金属蛋白酶抑制剂进行全面评估。