Ferran J L, de Oliveira E Dutra, Merchán P, Sandoval J E, Sánchez-Arrones L, Martínez-De-La-Torre M, Puelles L
Department of Human Anatomy and Psychobiology, University of Murcia, Murcia, E30071, Spain.
J Comp Neurol. 2009 Dec 1;517(4):405-51. doi: 10.1002/cne.22115.
Earlier results on molecularly coded progenitor domains in the chicken pretectum revealed an anteroposterior subdivision of the pretectum in precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) histogenetic areas, each specified differentially (Ferran et al. [2007] J Comp Neurol 505:379-403). Here we examined the nuclei derived from these areas with regard to characteristic gene expression patterns and gradual histogenesis (eventually, migration patterns). We sought a genoarchitectonic schema of the avian pretectum within the prosomeric model of the vertebrate forebrain (Puelles and Rubenstein [2003] Trends Neurosci 26:469-476; Puelles et al. [2007] San Diego: Academic Press). Transcription-factor gene markers were used to selectively map derivatives of the three pretectal histogenetic domains: Pax7 and Pax6 (CoP); FoxP1 and Six3 (JcP); and FoxP2, Ebf1, and Bhlhb4 (PcP). The combination of this genoarchitectonic information with additional data on Lim1, Tal2, and Nbea mRNA expression and other chemoarchitectonic results allowed unambiguous characterization of some 30 pretectal nuclei. Apart from grouping them as derivatives of the three early anteroposterior domains, we also assigned them to postulated dorsoventral subdomains (Ferran et al. [2007]). Several previously unknown neuronal populations were detected, thus expanding the list of pretectal structures, and we corrected some apparently confused concepts in the earlier literature. The composite gene expression map represents a substantial advance in anatomical and embryological knowledge of the avian pretectum. Many nuclear primordia can be recognized long before the mature differentiated state of the pretectum is achieved. This study provides fundamental notions for ultimate scientific study of the specification and regionalization processes building up this brain area, both in birds and other vertebrates.
早期关于鸡前顶盖中分子编码祖细胞区域的研究结果显示,前顶盖在连合前(PcP)、连合旁(JcP)和连合(CoP)组织发生区域存在前后细分,每个区域的特征各不相同(费兰等人,[2007]《比较神经学杂志》505:379 - 403)。在此,我们研究了源自这些区域的核团,涉及特征性基因表达模式和渐进性组织发生(最终是迁移模式)。我们在脊椎动物前脑的前脑模式模型中寻找鸟类前顶盖的基因架构图式(普列尔斯和鲁宾斯坦,[2003]《神经科学趋势》26:469 - 476;普列尔斯等人,[2007]圣地亚哥:学术出版社)。转录因子基因标记被用于选择性地绘制三个前顶盖组织发生区域的衍生物:Pax7和Pax6(CoP);FoxP1和Six3(JcP);以及FoxP2、Ebf1和Bhlhb4(PcP)。这种基因架构信息与关于Lim1、Tal2和Nbea mRNA表达的其他数据以及其他化学架构结果相结合,使得能够明确鉴定约30个前顶盖核团。除了将它们归类为三个早期前后区域的衍生物外,我们还将它们分配到假定的背腹子区域(费兰等人,[2007])。检测到了几个先前未知的神经元群体,从而扩展了前顶盖结构的列表,并且我们纠正了早期文献中一些明显混淆的概念。复合基因表达图代表了鸟类前顶盖在解剖学和胚胎学知识方面的重大进展。在顶盖达到成熟分化状态之前很久,许多核原基就可以被识别出来。这项研究为最终科学研究构建该脑区的特化和区域化过程提供了基本概念,无论是在鸟类还是其他脊椎动物中。