Kobayashi Miki U, Saiki Yoshitaka
WPI - Advanced Institute for Materials ResearchWPI-AIMRj, Tohoku University, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Japan.
Graduate School of Commerce and Management, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022904. doi: 10.1103/PhysRevE.89.022904. Epub 2014 Feb 5.
Manifold structures of the Lorenz system, the Hénon map, and the Kuramoto-Sivashinsky system are investigated in terms of unstable periodic orbits embedded in the attractors. Especially, changes of manifold structures are focused on when some parameters are varied. The angle between a stable manifold and an unstable manifold (manifold angle) at every sample point along an unstable periodic orbit is measured using the covariant Lyapunov vectors. It is found that the angle characterizes the parameter at which the periodic window corresponding to the unstable periodic orbit finishes, that is, a saddle-node bifurcation point. In particular, when the minimum value of the manifold angle along an unstable periodic orbit at a parameter is small (large), the corresponding periodic window exists near (away from) the parameter. It is concluded that the window sequence in a parameter space can be predicted from the manifold angles of unstable periodic orbits at some parameter. The fact is important because the local information in a parameter space characterizes the global information in it. This approach helps us find periodic windows including very small ones.
从嵌入吸引子的不稳定周期轨道的角度研究了洛伦兹系统、亨农映射和Kuramoto-Sivashinsky系统的流形结构。特别地,当某些参数变化时,重点关注流形结构的变化。使用协变李雅普诺夫向量测量沿着不稳定周期轨道的每个采样点处稳定流形和不稳定流形之间的夹角(流形角)。发现该角度表征了与不稳定周期轨道对应的周期窗口结束时的参数,即鞍结分岔点。特别地,当参数处沿着不稳定周期轨道的流形角的最小值较小时(较大时),相应的周期窗口存在于该参数附近(远离该参数)。得出结论,可从某些参数处不稳定周期轨道的流形角预测参数空间中的窗口序列。这一事实很重要,因为参数空间中的局部信息表征了其中的全局信息。这种方法有助于我们找到包括非常小的周期窗口在内的周期窗口。