Suppr超能文献

由于有限信息传输延迟导致的无标度神经网络上的同步转变。

Synchronization transitions on scale-free neuronal networks due to finite information transmission delays.

作者信息

Wang Qingyun, Perc Matjaz, Duan Zhisheng, Chen Guanrong

机构信息

State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 2):026206. doi: 10.1103/PhysRevE.80.026206. Epub 2009 Aug 19.

Abstract

We investigate front propagation and synchronization transitions in dependence on the information transmission delay and coupling strength over scale-free neuronal networks with different average degrees and scaling exponents. As the underlying model of neuronal dynamics, we use the efficient Rulkov map with additive noise. We show that increasing the coupling strength enhances synchronization monotonously, whereas delay plays a more subtle role. In particular, we found that depending on the inherent oscillation frequency of individual neurons, regions of irregular and regular propagating excitatory fronts appear intermittently as the delay increases. These delay-induced synchronization transitions manifest as well-expressed minima in the measure for spatial synchrony, appearing at every multiple of the oscillation frequency. Larger coupling strengths or average degrees can broaden the region of regular propagating fronts by a given information transmission delay and further improve synchronization. These results are robust against variations in system size, intensity of additive noise, and the scaling exponent of the underlying scale-free topology. We argue that fine-tuned information transmission delays are vital for assuring optimally synchronized excitatory fronts on complex neuronal networks and, indeed, they should be seen as important as the coupling strength or the overall density of interneuronal connections. We finally discuss some biological implications of the presented results.

摘要

我们研究了在具有不同平均度和标度指数的无标度神经网络中,前沿传播和同步转变如何依赖于信息传输延迟和耦合强度。作为神经元动力学的基础模型,我们使用带有加性噪声的高效鲁尔科夫映射。我们表明,增加耦合强度会单调增强同步性,而延迟则起着更为微妙的作用。特别是,我们发现,随着延迟增加,根据单个神经元的固有振荡频率,不规则和规则传播的兴奋性前沿区域会间歇性出现。这些由延迟引起的同步转变在空间同步度量中表现为明显的最小值,出现在振荡频率的每个倍数处。更大的耦合强度或平均度可以通过给定的信息传输延迟拓宽规则传播前沿的区域,并进一步改善同步性。这些结果对于系统大小、加性噪声强度以及基础无标度拓扑的标度指数的变化具有鲁棒性。我们认为,微调信息传输延迟对于确保复杂神经网络上兴奋性前沿的最佳同步至关重要,实际上,它们应被视为与耦合强度或神经元间连接的总体密度一样重要。我们最后讨论了所呈现结果的一些生物学意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验