Suppr超能文献

神经网络稀疏性与能耗的关系。

The Relationship between Sparseness and Energy Consumption of Neural Networks.

机构信息

Institute for Cognitive Neurodynamics, School of Science, East China University of Science and Technology, Meilong Road 130 Shanghai 200237, China.

Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Zhejiang, China.

出版信息

Neural Plast. 2020 Nov 25;2020:8848901. doi: 10.1155/2020/8848901. eCollection 2020.

Abstract

About 50-80% of total energy is consumed by signaling in neural networks. A neural network consumes much energy if there are many active neurons in the network. If there are few active neurons in a neural network, the network consumes very little energy. The ratio of active neurons to all neurons of a neural network, that is, the sparseness, affects the energy consumption of a neural network. Laughlin's studies show that the sparseness of an energy-efficient code depends on the balance between signaling and fixed costs. Laughlin did not give an exact ratio of signaling to fixed costs, nor did they give the ratio of active neurons to all neurons in most energy-efficient neural networks. In this paper, we calculated the ratio of signaling costs to fixed costs by the data from physiology experiments. The ratio of signaling costs to fixed costs is between 1.3 and 2.1. We calculated the ratio of active neurons to all neurons in most energy-efficient neural networks. The ratio of active neurons to all neurons in neural networks is between 0.3 and 0.4. Our results are consistent with the data from many relevant physiological experiments, indicating that the model used in this paper may meet neural coding under real conditions. The calculation results of this paper may be helpful to the study of neural coding.

摘要

大约 50%至 80%的总能量用于神经网络中的信号传递。如果神经网络中有许多活跃的神经元,那么它将消耗大量的能量。如果神经网络中活跃的神经元很少,那么网络消耗的能量就非常少。神经网络中活跃神经元与所有神经元的比例,即稀疏度,会影响神经网络的能量消耗。拉夫林的研究表明,节能编码的稀疏度取决于信号传递和固定成本之间的平衡。拉夫林没有给出信号传递与固定成本的确切比例,也没有给出大多数节能神经网络中活跃神经元与所有神经元的比例。在本文中,我们根据生理学实验数据计算了信号传递成本与固定成本的比值。信号传递成本与固定成本的比值在 1.3 到 2.1 之间。我们计算了大多数节能神经网络中活跃神经元与所有神经元的比例。神经网络中活跃神经元与所有神经元的比例在 0.3 到 0.4 之间。我们的结果与许多相关生理学实验的数据一致,表明本文所采用的模型可能符合实际条件下的神经编码。本文的计算结果可能有助于神经编码的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743a/7710421/704d5c1df0fb/NP2020-8848901.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验