Ghosh Arko, Sydekum Esther, Haiss Florent, Peduzzi Stefano, Zörner Björn, Schneider Regula, Baltes Christof, Rudin Markus, Weber Bruno, Schwab Martin E
Brain Research Institute and Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland.
J Neurosci. 2009 Sep 30;29(39):12210-9. doi: 10.1523/JNEUROSCI.1828-09.2009.
A lateral hemisection injury of the cervical spinal cord results in Brown-Séquard syndrome in humans and rats. The hands/forelimbs on the injured side are rendered permanently impaired, but the legs/hindlimbs recover locomotor functions. This is accompanied by increased use of the forelimb on the uninjured side. Nothing is known about the cortical circuits that correspond to these behavioral adaptations. In this study, on adult rats with cervical spinal cord lateral hemisection lesions (at segment C3/4), we explored the sensory representation and corticospinal projection of the intact (ipsilesional) cortex. Using blood oxygenation level-dependent functional magnetic resonance imaging and voltage-sensitive dye (VSD) imaging, we found that the cortex develops an enhanced representation of the unimpaired forepaw by 12 weeks after injury. VSD imaging also revealed the cortical spatio-temporal dynamics in response to electrical stimulation of the ipsilateral forepaw or hindpaw. Interestingly, stimulation of the ipsilesional hindpaw at 12 weeks showed a distinct activation of the hindlimb area in the intact, ipsilateral cortex, probably via the injury-spared spinothalamic pathway. Anterograde tracing of corticospinal axons from the intact cortex showed sprouting to recross the midline, innervating the spinal segments below the injury in both cervical and lumbar segments. Retrograde tracing of these midline-crossing axons from the cervical spinal cord (at segment C6/7) revealed the formation of a new ipsilateral forelimb representation in the cortex. Our results demonstrate profound reorganizations of the intact sensory-motor cortex after unilateral spinal cord injury. These changes may contribute to the behavioral adaptations, notably for the recovery of the ipsilesional hindlimb.
颈脊髓外侧半切损伤在人类和大鼠中会导致布朗 - 塞卡尔综合征。损伤侧的手/前肢会永久性受损,但腿/后肢的运动功能会恢复。这伴随着未受伤侧前肢使用增加。关于与这些行为适应相对应的皮质回路,我们一无所知。在本研究中,对患有颈脊髓外侧半切损伤(在C3/4节段)的成年大鼠,我们探索了完整(损伤侧)皮质的感觉表征和皮质脊髓投射。使用血氧水平依赖性功能磁共振成像和电压敏感染料(VSD)成像,我们发现损伤后12周时,皮质对未受损前爪的表征增强。VSD成像还揭示了对同侧前爪或后爪进行电刺激时皮质的时空动态。有趣的是,在12周时刺激损伤侧后爪,在完整的同侧皮质中后肢区域出现明显激活,可能是通过损伤保留的脊髓丘脑束途径。从完整皮质进行皮质脊髓轴突的顺行示踪显示轴突发芽并重新穿过中线,支配颈段和腰段损伤以下的脊髓节段。从颈脊髓(在C6/7节段)对这些穿过中线的轴突进行逆行示踪,揭示了皮质中同侧前肢新表征的形成。我们的结果表明单侧脊髓损伤后完整的感觉运动皮质发生了深刻的重组。这些变化可能有助于行为适应,特别是损伤侧后肢的恢复。