文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

啮齿动物中风和创伤后重新布线的下行运动通路的多样性和可塑性。

The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.

作者信息

Inoue Takahiro, Ueno Masaki

机构信息

Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.

出版信息

Front Neural Circuits. 2025 Mar 21;19:1566562. doi: 10.3389/fncir.2025.1566562. eCollection 2025.


DOI:10.3389/fncir.2025.1566562
PMID:40191711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11968733/
Abstract

Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.

摘要

下行至脊髓的神经通路在运动控制中起着至关重要的作用。它们常常因中风和创伤等脑损伤而受损,进而导致严重的运动障碍。由于成体中枢神经系统中神经回路的再生能力有限,目前尚无能够实现完全康复的有效治疗方法。值得注意的是,越来越多的证据表明,下行通路的残余回路在损伤后会动态重组,并有助于运动恢复。此外,细胞类型分类和操作方面的最新技术进展凸显了这些通路在结构和功能上的多样性。在此,我们聚焦于三条主要的下行通路,即来自大脑皮层的皮质脊髓束、来自红核的红核脊髓束以及来自网状结构的网状脊髓束,并总结它们目前在结构和功能方面的知识,特别是在啮齿动物模型(小鼠和大鼠)中的情况。然后,我们回顾并讨论这些通路在损伤后发生的重组过程和模式,这些重组可补偿失去的连接以促进恢复。了解每条下行通路的基本结构和功能特性以及重新布线回路的诱导过程和结果原理,将为增强多条下行通路的交互性重新布线以促进运动恢复提供治疗思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/53e6058174b2/fncir-19-1566562-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/84b0de0598f0/fncir-19-1566562-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/51ade598436a/fncir-19-1566562-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/81755dd4cd87/fncir-19-1566562-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/d11ef8a440d7/fncir-19-1566562-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/bffaf0760417/fncir-19-1566562-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/9a68d2a7ae74/fncir-19-1566562-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/44e3e3655398/fncir-19-1566562-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/53e6058174b2/fncir-19-1566562-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/84b0de0598f0/fncir-19-1566562-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/51ade598436a/fncir-19-1566562-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/81755dd4cd87/fncir-19-1566562-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/d11ef8a440d7/fncir-19-1566562-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/bffaf0760417/fncir-19-1566562-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/9a68d2a7ae74/fncir-19-1566562-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/44e3e3655398/fncir-19-1566562-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f2/11968733/53e6058174b2/fncir-19-1566562-g008.jpg

相似文献

[1]
The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents.

Front Neural Circuits. 2025-3-21

[2]
Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury.

Neurotherapeutics. 2016-4

[3]
Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.

J Neurosci. 2016-1-6

[4]
Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach.

Adv Anat Embryol Cell Biol. 2000

[5]
Spinal cord maturation and locomotion in mice with an isolated cortex.

Neuroscience. 2013-9-4

[6]
Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy.

Spine (Phila Pa 1976). 2001-6-1

[7]
Compensatory contribution of the contralateral pyramidal tract after stroke.

Front Neurol Neurosci. 2013

[8]
Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries.

Exp Neurol. 2015-4

[9]
Dynamic Interaction between Cortico-Brainstem Pathways during Training-Induced Recovery in Stroke Model Rats.

J Neurosci. 2019-8-8

[10]
Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.

Exp Neurol. 2013-5-17

引用本文的文献

[1]
Delayed Transplantation of Neural Stem Cells Improves Initial Graft Survival after Stroke.

Adv Sci (Weinh). 2025-8

本文引用的文献

[1]
Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: a randomised, double-blind, multicentre, placebo-controlled, phase 2b trial.

Lancet Neurol. 2025-1

[2]
Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury.

iScience. 2024-11-13

[3]
Hypothalamic deep brain stimulation augments walking after spinal cord injury.

Nat Med. 2024-12

[4]
Molecular signaling predicts corticospinal axon growth state and muscle response plasticity induced by neuromodulation.

Proc Natl Acad Sci U S A. 2024-11-19

[5]
Experience-driven competition in neural reorganization after stroke.

J Physiol. 2025-2

[6]
Spontaneously regenerative corticospinal neurons in mice.

bioRxiv. 2024-9-12

[7]
Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity.

Science. 2024-8-16

[8]
Spinal projecting neurons in rostral ventromedial medulla co-regulate motor and sympathetic tone.

Cell. 2024-6-20

[9]
Topographical and cell type-specific connectivity of rostral and caudal forelimb corticospinal neuron populations.

Cell Rep. 2024-4-23

[10]
Basal ganglia-spinal cord pathway that commands locomotor gait asymmetries in mice.

Nat Neurosci. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索