Schauer J E, Schelin A, Hanson P, Stratman F W
Institute for Enzyme Research, University of Wisconsin, Madison 53705.
Arch Biochem Biophys. 1990 Dec;283(2):503-11. doi: 10.1016/0003-9861(90)90674-n.
We examined the influence of dehydroepiandrosterone (DHEA), a beta-agonist, and exercise training on enzymes that detoxify toxic oxygen species. Feeding 0.4% DHEA decreased hepatic cytosolic (c) selenium-dependent glutathione peroxidase (GPX), (-26%, P less than 0.0001) and increased hepatic mitochondrial (m) Mn superoxide dismutase (SOD), (+38%, P less than 0.001). DHEA decreased myocardial c-GPX (-21%, P less than 0.05) when compared to a beta-agonist (beta A; L644969 Merck and Co.) fed at 5 ppm but neither differed from the Control (C). In contrast, the beta A increased hepatic m-GPX (+25%, P less than 0.05). In skeletal muscle, DHEA and beta A decreased muscle c-GPX by 20 and 12%, respectively (P less than 0.0009). DHEA increased both muscle (+20%, P less than 0.01) and myocardial (+20%, P less than 0.05) c-glutathione S-transferase (GST) over beta A (+20%, P less than 0.01) but neither was significantly different from C. Similar to DHEA, chronic training (Tr) (1 h/day, 5 days/week at 27 m/min, 15% grade on treadmill) decreased hepatic c-GPX (-16%, P less than 0.003). Tr elevates muscle c-GPX (+36%, P less than 0.05) in C. Tr increased myocardial c-GPX by 28% in the beta A-treated rats, whereas Tr decreased myocardial c-GPX by 22% in the C (P less than 0.05, interaction). One hour of acute exercise (Ex) (70% VO2 max relative work load) decreased hepatic homogenate catalase (-12%, P less than 0.02) and increased hepatic m-Mn SOD (+28%, P less than 0.03). Ex decreased myocardial c-GST (P less than 0.05) only in the DHEA-treated rats. DHEA and Tr may improve efficiency of oxygen utilization at the tissue level with lower antioxidant enzyme activity in liver and locally protective up-regulation in muscle. beta A stresses oxygen utilization systems and liver responds by up-regulation of antioxidant enzymes. The increase in myocardial c-GPX activity in the beta A-treated group may be a protective effect against indirect catecholamine-induced myocardial necrosis which results from free radical generation.
我们研究了脱氢表雄酮(DHEA)、一种β-激动剂和运动训练对有毒氧物质解毒酶的影响。喂食0.4%的DHEA可降低肝脏胞质(c)硒依赖性谷胱甘肽过氧化物酶(GPX)(降低26%,P<0.0001),并增加肝脏线粒体(m)锰超氧化物歧化酶(SOD)(增加38%,P<0.001)。与以5 ppm喂食的β-激动剂(βA;L644969,默克公司)相比,DHEA可降低心肌c-GPX(降低21%,P<0.05),但与对照组(C)相比无差异。相反,βA可增加肝脏m-GPX(增加25%,P<0.05)。在骨骼肌中,DHEA和βA分别使肌肉c-GPX降低20%和12%(P<0.0009)。与βA相比,DHEA可增加肌肉(增加20%,P<0.01)和心肌(增加20%,P<0.05)的c-谷胱甘肽S-转移酶(GST),但与C组相比均无显著差异。与DHEA类似,慢性训练(Tr)(每天1小时,每周5天,在跑步机上以27米/分钟、15%坡度进行)可降低肝脏c-GPX(降低16%,P<0.003)。Tr可提高C组肌肉c-GPX(增加36%,P<0.05)。在βA处理的大鼠中,Tr可使心肌c-GPX增加28%,而在C组中,Tr可使心肌c-GPX降低22%(P<0.05,交互作用)。1小时的急性运动(Ex)(相对工作负荷为70%VO2 max)可降低肝脏匀浆过氧化氢酶(降低12%,P<0.02),并增加肝脏m-Mn SOD(增加28%,P<0.03)。Ex仅在DHEA处理的大鼠中可降低心肌c-GST(P<0.05)。DHEA和Tr可能通过降低肝脏中抗氧化酶活性以及局部上调肌肉中的抗氧化酶来提高组织水平的氧利用效率。βA使氧利用系统受到压力,肝脏通过上调抗氧化酶做出反应。在βA处理组中,心肌c-GPX活性的增加可能是对间接儿茶酚胺诱导的心肌坏死的一种保护作用,这种坏死是由自由基产生导致的。