Arkhipov Anton, Roos Wouter H, Wuite Gijs J L, Schulten Klaus
Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Biophys J. 2009 Oct 7;97(7):2061-9. doi: 10.1016/j.bpj.2009.07.039.
Atomic force microscopy has recently provided highly precise measurements of mechanical properties of various viruses. However, molecular details underlying viral mechanics remain unresolved. Here we report atomic force microscopy nanoindentation experiments on T=4 hepatitis B virus (HBV) capsids combined with coarse-grained molecular dynamics simulations, which permit interpretation of experimental results at the molecular level. The force response of the indented capsid recorded in simulations agrees with experimental observations. In both experiment and simulation, irreversible capsid deformation is observed for deep indentations. Simulations show the irreversibility to be due to local bending and shifting of capsid proteins, rather than their global rearrangement. These results emphasize the viability of large capsid deformations without significant changes of the mutual positions of HBV capsid proteins, in contrast to the stiffer capsids of other viruses, which exhibit more extensive contacts between their capsid proteins than seen in the case of HBV.
原子力显微镜最近提供了对各种病毒力学性质的高精度测量。然而,病毒力学背后的分子细节仍未得到解决。在此,我们报告了对T = 4型乙肝病毒(HBV)衣壳进行的原子力显微镜纳米压痕实验,并结合了粗粒度分子动力学模拟,这使得能够在分子水平上解释实验结果。模拟中记录的被压痕衣壳的力响应与实验观察结果一致。在实验和模拟中,对于深压痕都观察到了衣壳的不可逆变形。模拟表明,这种不可逆性是由于衣壳蛋白的局部弯曲和移位,而不是它们的整体重排。这些结果强调了在乙肝病毒衣壳蛋白相互位置没有显著变化的情况下,衣壳发生大变形的可行性,这与其他病毒更硬的衣壳形成对比,其他病毒衣壳蛋白之间的接触比乙肝病毒更为广泛。