Suppr超能文献

氢气是巴氏甲烷八叠球菌能量守恒电子传递链中的首选中间体。

Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri.

作者信息

Kulkarni Gargi, Kridelbaugh Donna M, Guss Adam M, Metcalf William W

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Science Laboratory, Urbana, IL 61801-3763, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15915-20. doi: 10.1073/pnas.0905914106. Epub 2009 Sep 1.

Abstract

Methanogens use an unusual energy-conserving electron transport chain that involves reduction of a limited number of electron acceptors to methane gas. Previous biochemical studies suggested that the proton-pumping F(420)H(2) dehydrogenase (Fpo) plays a crucial role in this process during growth on methanol. However, Methanosarcina barkeri Delta fpo mutants constructed in this study display no measurable phenotype on this substrate, indicating that Fpo plays a minor role, if any. In contrast, Delta frh mutants lacking the cytoplasmic F(420)-reducing hydrogenase (Frh) are severely affected in their ability to grow and make methane from methanol, and double Delta fpo/Delta frh mutants are completely unable to use this substrate. These data suggest that the preferred electron transport chain involves production of hydrogen gas in the cytoplasm, which then diffuses out of the cell, where it is reoxidized with transfer of electrons into the energy-conserving electron transport chain. This hydrogen-cycling metabolism leads directly to production of a proton motive force that can be used by the cell for ATP synthesis. Nevertheless, M. barkeri does have the flexibility to use the Fpo-dependent electron transport chain when needed, as shown by the poor growth of the Delta frh mutant. Our data suggest that the rapid enzymatic turnover of hydrogenases may allow a competitive advantage via faster growth rates in this freshwater organism. The mutant analysis also confirms the proposed role of Frh in growth on hydrogen/carbon dioxide and suggests that either Frh or Fpo is needed for aceticlastic growth of M. barkeri.

摘要

产甲烷菌利用一种不同寻常的能量守恒电子传递链,该链涉及将有限数量的电子受体还原为甲烷气体。先前的生化研究表明,质子泵F(420)H(2)脱氢酶(Fpo)在甲醇生长过程中的这一过程中起关键作用。然而,本研究构建的巴氏甲烷八叠球菌Delta fpo突变体在该底物上未表现出可测量的表型,这表明Fpo即便有作用,也是次要作用。相比之下,缺乏细胞质F(420)还原氢化酶(Frh)的Delta frh突变体在利用甲醇生长和产生甲烷的能力上受到严重影响,而双Delta fpo/Delta frh突变体则完全无法利用该底物。这些数据表明,首选的电子传递链涉及在细胞质中产生氢气,然后氢气扩散出细胞,在细胞外被重新氧化,同时电子转移到能量守恒电子传递链中。这种氢循环代谢直接导致产生质子动力,细胞可利用该质子动力进行ATP合成。尽管如此,如Delta frh突变体生长不良所示,巴氏甲烷八叠球菌在需要时确实有灵活使用依赖Fpo的电子传递链的能力。我们的数据表明,氢化酶的快速酶周转可能通过在这种淡水生物中实现更快的生长速度而带来竞争优势。突变分析还证实了Frh在氢气/二氧化碳生长中所提出的作用,并表明巴氏甲烷八叠球菌的乙酸生长需要Frh或Fpo。

相似文献

引用本文的文献

2
Pyruvate-dependent growth of .依赖于丙酮酸的. 的生长。
J Bacteriol. 2024 Feb 22;206(2):e0036323. doi: 10.1128/jb.00363-23. Epub 2024 Feb 2.
3
Electron transport chains as a window into the earliest stages of evolution.电子传递链作为进化早期阶段的一个窗口。
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2210924120. doi: 10.1073/pnas.2210924120. Epub 2023 Aug 14.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验