Suppr超能文献

与起源环境相关的分离物关键生理特性的相关性。

Correlation of Key Physiological Properties of Isolates with Environment of Origin.

机构信息

Department of Microbiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.

School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.

出版信息

Appl Environ Microbiol. 2021 Jun 11;87(13):e0073121. doi: 10.1128/AEM.00731-21.

Abstract

It is known that the physiology of species can differ significantly, but the ecological impact of these differences is unclear. We recovered two strains of from two different ecosystems with a similar enrichment and isolation method. Both strains had the same ability to metabolize organic substrates and participate in direct interspecies electron transfer but also had major physiological differences. Strain DH-1, which was isolated from an anaerobic digester, used H as an electron donor. Genome analysis indicated that it lacks an Rnf complex and conserves energy from acetate metabolism via intracellular H cycling. In contrast, strain DH-2, a subsurface isolate, lacks hydrogenases required for H uptake and cycling and has an Rnf complex for energy conservation when growing on acetate. Further analysis of the genomes of previously described isolates, as well as phylogenetic and metagenomic data on uncultured in anaerobic digesters and diverse soils and sediments, revealed a physiological dichotomy that corresponded with environment of origin. The physiology of type I revolves around H production and consumption. In contrast, type II species eschew H and have genes for an Rnf complex and the multiheme, membrane-bound -type cytochrome MmcA, shown to be essential for extracellular electron transfer. The distribution of species in diverse environments suggests that the type I H-based physiology is well suited for high-energy environments, like anaerobic digesters, whereas type II Rnf/cytochrome-based physiology is an adaptation to the slower, steady-state carbon and electron fluxes common in organic-poor anaerobic soils and sediments. Biogenic methane is a significant greenhouse gas, and the conversion of organic wastes to methane is an important bioenergy process. species play an important role in methane production in many methanogenic soils and sediments as well as anaerobic waste digesters. The studies reported here emphasize that the genus is composed of two physiologically distinct groups. This is important to recognize when interpreting the role of in methanogenic environments, especially regarding H metabolism. Furthermore, the finding that type I species predominate in environments with high rates of carbon and electron flux and that type II species predominate in lower-energy environments suggests that evaluating the relative abundance of type I and type II may provide further insights into rates of carbon and electron flux in methanogenic environments.

摘要

已知物种的生理学特征可能存在显著差异,但这些差异对生态的影响尚不清楚。我们使用相似的富集和分离方法,从两个不同的生态系统中回收了两种 。这两种菌株都具有相同的代谢有机底物和参与直接种间电子转移的能力,但也存在主要的生理差异。从厌氧消化器中分离出的菌株 DH-1 以 H 作为电子供体。基因组分析表明,它缺乏 Rnf 复合物,并通过细胞内 H 循环从乙酸盐代谢中保存能量。相比之下,从地下水中分离出的菌株 DH-2 缺乏用于 H 摄取和循环的氢化酶,并且在以乙酸盐为生长基质时具有 Rnf 复合物用于能量保存。对以前描述的分离株的基因组进行进一步分析,以及对厌氧消化器中未培养的 和不同土壤和沉积物中的种间电子传递的系统发育和宏基因组数据进行分析,揭示了与起源环境相对应的生理二分法。I 型 的生理学围绕 H 的产生和消耗展开。相比之下,II 型 物种回避 H,并具有 Rnf 复合物和多血红素、膜结合的 -型细胞色素 MmcA 的基因,这些基因对于细胞外电子传递是必不可少的。 在不同环境中的分布表明,基于 H 的 I 型生理学非常适合高能环境,如厌氧消化器,而基于 Rnf/cytochrome 的 II 型生理学是对有机贫厌氧土壤和沉积物中常见的缓慢、稳态碳和电子通量的适应。生物甲烷是一种重要的温室气体,将有机废物转化为甲烷是一种重要的生物能源过程。 在许多产甲烷土壤和沉积物以及厌氧废物消化器中, 种在甲烷的产生中发挥着重要作用。这里报道的研究强调,属 由两个在生理学上明显不同的群体组成。在解释 在产甲烷环境中的作用时,这一点很重要,尤其是在 H 代谢方面。此外,发现 I 型 物种在碳和电子通量速率较高的环境中占优势,而 II 型 物种在能量较低的环境中占优势,这表明评估 I 型和 II 型 的相对丰度可能会为产甲烷环境中的碳和电子通量速率提供进一步的见解。

相似文献

1
Correlation of Key Physiological Properties of Isolates with Environment of Origin.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0073121. doi: 10.1128/AEM.00731-21.
2
Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer.
mBio. 2021 Oct 26;12(5):e0234421. doi: 10.1128/mBio.02344-21. Epub 2021 Oct 5.
3
A Membrane-Bound Cytochrome Enables To Conserve Energy from Extracellular Electron Transfer.
mBio. 2019 Aug 20;10(4):e00789-19. doi: 10.1128/mBio.00789-19.
4
Methane production by via direct interspecies electron transfer with .
mBio. 2023 Aug 31;14(4):e0036023. doi: 10.1128/mbio.00360-23. Epub 2023 Jun 12.
8
Assessment of hydrogen metabolism in commercial anaerobic digesters.
Appl Microbiol Biotechnol. 2016 May;100(10):4699-710. doi: 10.1007/s00253-016-7436-5. Epub 2016 Mar 19.
9
Non-autotrophic methanogens dominate in anaerobic digesters.
Sci Rep. 2017 May 4;7(1):1510. doi: 10.1038/s41598-017-01752-x.
10
Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus .
Microbiol Mol Biol Rev. 2019 Sep 18;83(4). doi: 10.1128/MMBR.00020-19. Print 2019 Nov 20.

引用本文的文献

1
Enhancement of direct interspecies electron transfer and methane production by co-culture of dual species and .
Front Microbiol. 2025 Aug 5;16:1604265. doi: 10.3389/fmicb.2025.1604265. eCollection 2025.
3
Cell surface differences within the genus shape interactions with the extracellular environment.
J Bacteriol. 2025 Aug 21;207(8):e0011225. doi: 10.1128/jb.00112-25. Epub 2025 Jul 25.
4
Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes.
Curr Res Microb Sci. 2025 Mar 31;8:100383. doi: 10.1016/j.crmicr.2025.100383. eCollection 2025.
5
Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by .
Appl Environ Microbiol. 2025 Mar 19;91(3):e0223824. doi: 10.1128/aem.02238-24. Epub 2025 Feb 13.
8
Riboflavin modified carbon cloth enhances anaerobic digestion treating food waste in a pilot-scale system.
Front Bioeng Biotechnol. 2024 May 28;12:1395810. doi: 10.3389/fbioe.2024.1395810. eCollection 2024.
9
Electrobiocorrosion by microbes without outer-surface cytochromes.
mLife. 2024 Mar 19;3(1):110-118. doi: 10.1002/mlf2.12111. eCollection 2024 Mar.
10
Cytochrome-mediated direct electron uptake from metallic iron by .
mLife. 2022 Nov 17;1(4):443-447. doi: 10.1002/mlf2.12044. eCollection 2022 Dec.

本文引用的文献

1
Microbes trading electricity in consortia of environmental and biotechnological significance.
Curr Opin Biotechnol. 2021 Feb;67:119-129. doi: 10.1016/j.copbio.2021.01.014. Epub 2021 Feb 2.
2
Belowground changes to community structure alter methane-cycling dynamics in Amazonia.
Environ Int. 2020 Dec;145:106131. doi: 10.1016/j.envint.2020.106131. Epub 2020 Sep 24.
3
: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis.
Front Microbiol. 2020 Jul 28;11:1806. doi: 10.3389/fmicb.2020.01806. eCollection 2020.
6
Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus .
Microbiol Mol Biol Rev. 2019 Sep 18;83(4). doi: 10.1128/MMBR.00020-19. Print 2019 Nov 20.
7
Life on the thermodynamic edge: Respiratory growth of an acetotrophic methanogen.
Sci Adv. 2019 Aug 21;5(8):eaaw9059. doi: 10.1126/sciadv.aaw9059. eCollection 2019 Aug.
8
A Membrane-Bound Cytochrome Enables To Conserve Energy from Extracellular Electron Transfer.
mBio. 2019 Aug 20;10(4):e00789-19. doi: 10.1128/mBio.00789-19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验