Suppr超能文献

视网膜感受野中可预测的不规则性。

Predictable irregularities in retinal receptive fields.

作者信息

Liu Yuan Sophie, Stevens Charles F, Sharpee Tatyana O

机构信息

Computational Neurobiology Laboratory and Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16499-504. doi: 10.1073/pnas.0908926106. Epub 2009 Sep 10.

Abstract

Understanding how the nervous system achieves reliable performance using unreliable components is important for many disciplines of science and engineering, in part because it can suggest ways to lower the energetic cost of computing. In vision, retinal ganglion cells partition visual space into approximately circular regions termed receptive fields (RFs). Average RF shapes are such that they would provide maximal spatial resolution if they were centered on a perfect lattice. However, individual shapes have fine-scale irregularities. Here, we find that irregular RF shapes increase the spatial resolution in the presence of lattice irregularities from approximately 60% to approximately 92% of that possible for a perfect lattice. Optimization of RF boundaries around their fixed center positions reproduced experimental observations neuron-by-neuron. Our results suggest that lattice irregularities determine the shapes of retinal RFs and that similar algorithms can improve the performance of retinal prosthetics where substantial irregularities arise at their interface with neural tissue.

摘要

理解神经系统如何利用不可靠的组件实现可靠的性能,对许多科学和工程学科都很重要,部分原因在于它可以为降低计算的能量成本提供思路。在视觉方面,视网膜神经节细胞将视觉空间划分为近似圆形的区域,称为感受野(RFs)。平均感受野形状是这样的:如果它们以完美晶格为中心,就能提供最大空间分辨率。然而,单个形状存在精细尺度的不规则性。在这里,我们发现,在存在晶格不规则性的情况下,不规则的感受野形状将空间分辨率从完美晶格可能达到的约60%提高到了约92%。围绕其固定中心位置对感受野边界进行优化,逐神经元地再现了实验观察结果。我们的结果表明,晶格不规则性决定了视网膜感受野的形状,并且类似的算法可以改善视网膜假体的性能,因为在其与神经组织的界面处会出现大量不规则性。

相似文献

1
Predictable irregularities in retinal receptive fields.视网膜感受野中可预测的不规则性。
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16499-504. doi: 10.1073/pnas.0908926106. Epub 2009 Sep 10.

引用本文的文献

2
Efficient processing of natural scenes in visual cortex.视觉皮层对自然场景的高效处理。
Front Cell Neurosci. 2022 Dec 5;16:1006703. doi: 10.3389/fncel.2022.1006703. eCollection 2022.
4
Optimal Information Transmission by Overlapping Retinal Cell Mosaics.重叠视网膜细胞镶嵌实现的最优信息传递
Proc Conf Inf Sci Syst. 2018 Mar;2018. doi: 10.1109/ciss.2018.8362310. Epub 2018 May 24.
7
A Statistical Growth Property of Plant Root Architectures.植物根系结构的一种统计生长特性。
Plant Phenomics. 2020 Nov 8;2020:2073723. doi: 10.34133/2020/2073723. eCollection 2020.
9
Probing Computation in the Primate Visual System at Single-Cone Resolution.在单锥体分辨率下探测灵长类视觉系统的计算。
Annu Rev Neurosci. 2019 Jul 8;42:169-186. doi: 10.1146/annurev-neuro-070918-050233. Epub 2019 Mar 11.
10
Inferring hidden structure in multilayered neural circuits.推断多层神经回路中的隐藏结构。
PLoS Comput Biol. 2018 Aug 23;14(8):e1006291. doi: 10.1371/journal.pcbi.1006291. eCollection 2018 Aug.

本文引用的文献

1
Receptive fields and functional architecture in the retina.视网膜中的感受野与功能结构。
J Physiol. 2009 Jun 15;587(Pt 12):2753-67. doi: 10.1113/jphysiol.2009.170704.
4
Design of a neuronal array.神经元阵列的设计。
J Neurosci. 2008 Mar 19;28(12):3178-89. doi: 10.1523/JNEUROSCI.5259-07.2008.
7
General design principle for scalable neural circuits in a vertebrate retina.脊椎动物视网膜中可扩展神经回路的一般设计原则。
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12931-5. doi: 10.1073/pnas.0705469104. Epub 2007 Jul 23.
10
Functional organization of ganglion cells in the salamander retina.蝾螈视网膜中神经节细胞的功能组织
J Neurophysiol. 2006 Apr;95(4):2277-92. doi: 10.1152/jn.00928.2005. Epub 2005 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验