Suppr超能文献

在冠心病风险评估中使用非传统风险因素:美国预防服务工作组推荐声明。

Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement.

机构信息

U.S. Preventive Services Task Force, Agency for Healthcare Research and Quality, Rockville, Maryland, USA.

出版信息

Ann Intern Med. 2009 Oct 6;151(7):474-82. doi: 10.7326/0003-4819-151-7-200910060-00008.

Abstract

DESCRIPTION

New recommendation from the U.S. Preventive Services Task Force (USPSTF) on the use of nontraditional, or novel, risk factors in assessing the coronary heart disease (CHD) risk of asymptomatic persons.

METHODS

Systematic reviews were conducted of literature since 1996 on 9 proposed nontraditional markers of CHD risk: high-sensitivity C-reactive protein, ankle-brachial index, leukocyte count, fasting blood glucose, periodontal disease, carotid intima-media thickness, coronary artery calcification score on electron-beam computed tomography, homocysteine, and lipoprotein(a). The reviews followed a hierarchical approach aimed at determining which factors could practically and definitively reassign persons assessed as intermediate-risk according to their Framingham score to either a high-risk or low-risk strata, and thereby improve outcomes by means of aggressive risk-factor modification in those newly assigned to the high-risk stratum.

RECOMMENDATION

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of using the nontraditional risk factors studied to screen asymptomatic men and women with no history of CHD to prevent CHD events. (I statement).

摘要

描述

美国预防服务工作组(USPSTF)关于在评估无症状人群冠心病(CHD)风险时使用非传统或新型风险因素的新建议。

方法

对1996年以来关于9种提议的冠心病风险非传统标志物的文献进行系统评价:高敏C反应蛋白、踝臂指数、白细胞计数、空腹血糖、牙周病、颈动脉内膜中层厚度、电子束计算机断层扫描的冠状动脉钙化评分、同型半胱氨酸和脂蛋白(a)。这些评价采用分层方法,旨在确定哪些因素能够切实且明确地将根据弗雷明汉评分被评估为中度风险的人群重新归类为高风险或低风险类别,从而通过对新归类为高风险类别的人群积极调整风险因素来改善预后。

建议

USPSTF得出结论,目前的证据不足以评估使用所研究的非传统风险因素对无冠心病病史的无症状男性和女性进行筛查以预防冠心病事件的利弊平衡。(I声明)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验