Suppr超能文献

用于电池诊断的单根纳米棒器件:以 LiMn2O4 为例的研究

Single nanorod devices for battery diagnostics: a case study on LiMn2O4.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nano Lett. 2009 Dec;9(12):4109-14. doi: 10.1021/nl902315u.

Abstract

This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn(2)O(4) nanorod materials as an example. LiMn(2)O(4) and Al-doped LiMn(2)O(4) nanorods were synthesized by a two-step method that combines hydrothermal synthesis of beta-MnO(2) nanorods and a solid state reaction to convert them to LiMn(2)O(4) nanorods. lambda-MnO(2) nanorods were also prepared by acid treatment of LiMn(2)O(4) nanorods. The effect of electrolyte etching on these LiMn(2)O(4)-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual single-crystalline particle. Experiments show that Al dopants reduce the dissolution of Mn(3+) ions significantly and make the LiAl(0.1)Mn(1.9)O(4) nanorods much more stable than LiMn(2)O(4) against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn(2)O(4) in our Li-ion battery tests: LiAl(0.1)Mn(1.9)O(4) nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 degrees C, whereas LiMn(2)O(4) shows worse retention of 91% at room temperature, and 69% at 60 degrees C. Moreover, temperature-dependent I-V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn(2)O(4) nanorod samples, suggesting good battery performance at low temperature.

摘要

本文以 LiMn(2)O(4)纳米棒材料为例,提出了单纳米结构器件作为电池的一种强大的新型诊断工具。采用两步法合成 LiMn(2)O(4)和 Al 掺杂 LiMn(2)O(4)纳米棒,该方法结合了β-MnO(2)纳米棒的水热合成和固态反应,将其转化为 LiMn(2)O(4)纳米棒。通过对 LiMn(2)O(4)纳米棒进行酸处理也制备了 lambda-MnO(2)纳米棒。通过 SEM 和单纳米棒传输测量研究了电解质刻蚀对这些 LiMn(2)O(4)相关纳米棒的影响,这是首次在单个单晶颗粒水平上研究该材料的传输特性。实验表明,Al 掺杂剂显著降低了 Mn(3+)离子的溶解,并使 LiAl(0.1)Mn(1.9)O(4)纳米棒比 LiMn(2)O(4)对电解质刻蚀更稳定,这体现在尺寸收缩和电导下降的放大倍数上。这些结果与我们在锂离子电池测试中 Al 掺杂 LiMn(2)O(4)更好的循环性能很好地相关:LiAl(0.1)Mn(1.9)O(4)纳米棒在室温下以 1C 速率循环 100 次后保留了 96%的容量,在 60°C 时保留了 80%,而 LiMn(2)O(4)在室温下的保留率较差,为 91%,在 60°C 时的保留率为 69%。此外,温度依赖的 I-V 测量表明,在 290 K 由于电荷有序转变而引起的电子电阻急剧增加在我们的 LiMn(2)O(4)纳米棒样品中并未出现,这表明在低温下具有良好的电池性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验