Suppr超能文献

用于储能装置的高导电纸。

Highly conductive paper for energy-storage devices.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21490-4. doi: 10.1073/pnas.0908858106. Epub 2009 Dec 7.

Abstract

Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

摘要

本文研究了将 1D 纳米材料集成到纸张上,以纸张作为储能装置的平台。研究表明,通过简单的溶液处理工艺,在商用纸张上涂覆单壁碳纳米管和银纳米线薄膜,可使纸张具有高度的导电性,方阻低至 1 欧姆/平方(Ω/sq)。与塑料相比,纸张衬底可显著提高薄膜附着力,大大简化涂覆工艺,并显著降低成本。基于 CNT 导电纸的超级电容器具有优异的性能。仅考虑 CNT 质量时,可获得 200 F/g 的比电容、30-47 瓦时/千克(Wh/kg)的比能量、200,000 W/kg 的比功率以及超过 40,000 次循环的稳定循环寿命。这些值远优于其他平面衬底(如塑料)上器件的性能。即使考虑所有死区组件的重量,仍可实现 7.5 Wh/kg 的比能量。此外,这种导电纸可用作锂离子电池的优异轻质集流器,以替代现有的金属集流器。本工作表明,我们的导电纸可为高性能储能装置提供一种高度可扩展且低成本的解决方案。

相似文献

1
Highly conductive paper for energy-storage devices.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21490-4. doi: 10.1073/pnas.0908858106. Epub 2009 Dec 7.
3
Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
Nanotechnology. 2014 Oct 31;25(43):435405. doi: 10.1088/0957-4484/25/43/435405. Epub 2014 Oct 10.
4
Flexible polyester cellulose paper supercapacitor with a gel electrolyte.
Chemphyschem. 2013 Nov 11;14(16):3822-6. doi: 10.1002/cphc.201300622. Epub 2013 Oct 23.
5
Stretchable, porous, and conductive energy textiles.
Nano Lett. 2010 Feb 10;10(2):708-14. doi: 10.1021/nl903949m.
6
High-Performance Supercapacitors from Niobium Nanowire Yarns.
ACS Appl Mater Interfaces. 2015 Jul 1;7(25):13882-8. doi: 10.1021/acsami.5b02327. Epub 2015 Jun 19.
7
Thin, flexible secondary Li-ion paper batteries.
ACS Nano. 2010 Oct 26;4(10):5843-8. doi: 10.1021/nn1018158.
8
A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes.
Dalton Trans. 2019 Jun 14;48(22):7659-7665. doi: 10.1039/c9dt01066a. Epub 2019 May 3.
9
Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
Phys Chem Chem Phys. 2011 Oct 21;13(39):17615-24. doi: 10.1039/c1cp21910c. Epub 2011 Sep 1.
10
Silica-Mediated Formation of Nickel Sulfide Nanosheets on CNT Films for Versatile Energy Storage.
Small. 2019 Apr;15(15):e1805064. doi: 10.1002/smll.201805064. Epub 2019 Feb 28.

引用本文的文献

1
Electrowetting on Dielectric (EWOD) Based Portable Multimaterial Printer To Fabricate Origami Devices.
ACS Appl Mater Interfaces. 2025 Aug 13;17(32):46442-46455. doi: 10.1021/acsami.5c12629. Epub 2025 Jul 30.
2
Self-Supporting Quasi-1D TaS Nanofiber Films with Dual Cationic/Anionic Redox for High-Performance Mg-Li Hybrid Ion Batteries.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44513-44527. doi: 10.1021/acsami.5c09460. Epub 2025 Jul 23.
4
Theoretical Specific Capacity and Metal Ion Diffusion Pathway of NiMoO Microspheres for Hybrid Supercapacitors.
Small. 2025 Apr;21(13):e2500080. doi: 10.1002/smll.202500080. Epub 2025 Feb 24.
6
Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring.
Nat Commun. 2024 Oct 2;15(1):5974. doi: 10.1038/s41467-024-49939-x.
7
Graphene-based nanotechnology in the Internet of Things: a mini review.
Discov Nano. 2024 Jul 2;19(1):110. doi: 10.1186/s11671-024-04054-0.
9
Non-enzymatic paper-based analytical device for direct potentiometric detection of urine creatinine.
Mikrochim Acta. 2024 Feb 9;191(3):128. doi: 10.1007/s00604-024-06203-9.
10
Electric Double Layer Based Epidermal Electronics for Healthcare and Human-Machine Interface.
Biosensors (Basel). 2023 Aug 3;13(8):787. doi: 10.3390/bios13080787.

本文引用的文献

1
Conducting polymer-based nanostructurized materials: electrochemical aspects.
Nanotechnology. 2005 Oct;16(10):R51-62. doi: 10.1088/0957-4484/16/10/R01. Epub 2005 Aug 16.
2
Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
Anal Chem. 2009 Aug 15;81(16):7091-5. doi: 10.1021/ac901071p.
3
Single nanorod devices for battery diagnostics: a case study on LiMn2O4.
Nano Lett. 2009 Dec;9(12):4109-14. doi: 10.1021/nl902315u.
5
Printable thin film supercapacitors using single-walled carbon nanotubes.
Nano Lett. 2009 May;9(5):1872-6. doi: 10.1021/nl8038579.
6
Three-dimensional microfluidic devices fabricated in layered paper and tape.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19606-11. doi: 10.1073/pnas.0810903105. Epub 2008 Dec 8.
7
Flexible energy storage devices based on nanocomposite paper.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13574-7. doi: 10.1073/pnas.0706508104. Epub 2007 Aug 15.
8
Efficient tandem polymer solar cells fabricated by all-solution processing.
Science. 2007 Jul 13;317(5835):222-5. doi: 10.1126/science.1141711.
9
Inkjet printing of electrically conductive patterns of carbon nanotubes.
Small. 2006 Aug;2(8-9):1021-5. doi: 10.1002/smll.200600061.
10
Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials.
Science. 2006 Dec 15;314(5806):1754-7. doi: 10.1126/science.1132394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验