Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
Curr Neurovasc Res. 2009 Nov;6(4):223-38. doi: 10.2174/156720209789630302.
Microglia of the central nervous system have a dual role in the ability to influence the survival of neighboring cells. During inflammatory cell activation, microglia can lead to the disposal of toxic cellular products and permit tissue regeneration, but microglia also may lead to cellular destruction with phagocytic removal. For these reasons, it is essential to elucidate not only the underlying pathways that control microglial activation and proliferation, but also the factors that determine microglial survival. In this regard, we investigated in the EOC 2 microglial cell line with an oxygen-glucose deprivation (OGD) injury model of oxidative stress the role of the "O" class forkhead transcription factor FoxO3a that in some scenarios is closely linked to immune system function. We demonstrate that FoxO3a is a necessary element in the control of early and late apoptotic injury programs that involve membrane phosphatidylserine externalization and nuclear DNA degradation, since transient knockdown of FoxO3a in microglia preserves cellular survival 24 hours following OGD exposure. However, prior to the onset of apoptotic injury, FoxO3a facilitates the activation and proliferation of microglia as early as 3 hours following OGD exposure that occurs in conjunction with the trafficking of the unphosphorylated and active post-translational form of FoxO3a from the cytoplasm to the cell nucleus. FoxO3a also can modulate apoptotic mitochondrial signal transduction pathways in microglia, since transient knockdown of FoxO3a prevents mitochondrial membrane depolarization as well as the release of cytochrome c during OGD. Control of this apoptotic cascade also extends to progressive caspase activation as early as 1 hour following OGD exposure. The presence of FoxO3a is necessary for the expression of cleaved (active) caspase 3, 8, and 9, since loss of FoxO3a abrogates the induction of caspase activity. Interestingly, elimination of FoxO3a reduced caspase 9 activity to a lesser extent than that noted with caspase 3 and 8 activities, suggesting that FoxO3a in relation to caspase 9 may be more reliant upon other signal transduction pathways potentially independent from caspase 3 and 8.
中枢神经系统的小胶质细胞具有影响邻近细胞存活的双重作用。在炎症细胞激活期间,小胶质细胞可以导致毒性细胞产物的清除并允许组织再生,但小胶质细胞也可能通过吞噬作用导致细胞破坏。出于这些原因,阐明不仅控制小胶质细胞激活和增殖的潜在途径,而且确定小胶质细胞存活的因素至关重要。在这方面,我们用氧葡萄糖剥夺 (OGD) 损伤模型的氧化应激研究了“O”类叉头转录因子 FoxO3a 在 EOC 2 小胶质细胞系中的作用,在某些情况下,FoxO3a 与免疫系统功能密切相关。我们证明,FoxO3a 是控制早期和晚期凋亡损伤程序的必要因素,这些程序涉及膜磷脂酰丝氨酸外翻和核 DNA 降解,因为 FoxO3a 的瞬时敲低可在 OGD 暴露后 24 小时保存细胞存活。然而,在凋亡损伤开始之前,FoxO3a 促进 OGD 暴露后 3 小时内小胶质细胞的激活和增殖,这与未磷酸化和活性的 FoxO3a 后翻译形式从细胞质向细胞核的运输有关。FoxO3a 还可以调节小胶质细胞中的凋亡线粒体信号转导途径,因为 FoxO3a 的瞬时敲低可防止 OGD 期间线粒体膜去极化以及细胞色素 c 的释放。对这种凋亡级联的控制还扩展到 OGD 暴露后 1 小时内早期 caspase 的渐进激活。FoxO3a 的存在是表达裂解(活性)半胱天冬酶 3、8 和 9 的必要条件,因为 FoxO3a 的缺失消除了 caspase 活性的诱导。有趣的是,与 caspase 3 和 8 活性相比,FoxO3a 的消除降低了 caspase 9 的活性,这表明与 caspase 9 相比,FoxO3a 可能更依赖于其他信号转导途径,这些途径可能独立于 caspase 3 和 8。