Suppr超能文献

基于隐马尔可夫模型的脑电图处理对人类睡眠阶段的分类

[Classification of human sleep stages based on EEG processing using hidden Markov models].

作者信息

Doroshenkov L G, Konyshev V A, Selishchev S V

出版信息

Med Tekh. 2007 Jan-Feb(1):24-8.

Abstract

The goal of this work was to describe an automated system for classification of human sleep stages. Classification of sleep stages is an important problem of diagnosis and treatment of human sleep disorders. The developed classification method is based on calculation of characteristics of the main sleep rhythms. It uses hidden Markov models. The method is highly accurate and provides reliable identification of the main stages of sleep. The results of automatic classification are in good agreement with the results of sleep stage identification performed by an expert somnologist using Rechtschaffen and Kales rules. This substantiates the applicability of the developed classification system to clinical diagnosis.

摘要

这项工作的目标是描述一种用于人类睡眠阶段分类的自动化系统。睡眠阶段分类是人类睡眠障碍诊断和治疗中的一个重要问题。所开发的分类方法基于主要睡眠节律特征的计算。它使用隐马尔可夫模型。该方法具有很高的准确性,能够可靠地识别睡眠的主要阶段。自动分类的结果与专家睡眠学家使用 Rechtschaffen 和 Kales 规则进行的睡眠阶段识别结果高度一致。这证实了所开发的分类系统在临床诊断中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验