Suppr超能文献

一种通过肽质量指纹图谱进行蛋白质鉴定的 Perl 程序。

A Perl procedure for protein identification by Peptide Mass Fingerprinting.

机构信息

Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.

出版信息

BMC Bioinformatics. 2009 Oct 15;10 Suppl 12(Suppl 12):S11. doi: 10.1186/1471-2105-10-S12-S11.

Abstract

BACKGROUND

One of the topics of major interest in proteomics is protein identification. Protein identification can be achieved by analyzing the mass spectrum of a protein sample through different approaches. One of them, called Peptide Mass Fingerprinting (PMF), combines mass spectrometry (MS) data with searching strategies in a suitable database of known protein to provide a list of candidate proteins ranked by a score. To this aim, several algorithms and software tools have been proposed. However, the scoring methods and mainly the statistical evaluation of the results can be significantly improved.

RESULTS

In this work, a Perl procedure for protein identification by PMF, called MsPI (Mass spectrometry Protein Identification), is presented. The implemented scoring methods were derived from the literature. MsPI implements a strategy to remove the contaminant masses present in the acquired spectra. Moreover, MsPI includes a statistical method to assign to each candidate protein, in addition to the scoring value, a p-value. Results obtained by MsPI on a dataset of 10 protein samples were compared with those achieved using two other software tools, i.e. Piums and Mascot. Piums implements one of the scoring methods available in MsPI, while Mascot is one of the most frequently used software tools in the protein identification field. MsPI scripts are available for downloading on the web site http://aimed11.unipv.it/MsPI.

CONCLUSION

The performances of MsPI seem to be better than those of Piums and Mascot. In fact, on the considered dataset, MsPI includes in its candidate proteins list, the "true" proteins nine times over ten, whereas Piums includes in its list the "true" proteins only four time over ten. Even if Mascot also correctly includes in the candidates list the "true" proteins nine times over ten, it provides longer candidate lists, therefore increasing the number of false positives when the molecular weight of the proteins in the sample is approximatively known (e.g. by the 1-D/2-D electrophoresis gel). Moreover, being MsPI a Perl tool, it can be easily extended and customized by the final users.

摘要

背景

蛋白质组学中一个主要的研究课题是蛋白质鉴定。蛋白质鉴定可以通过对蛋白质样本的质谱进行不同的分析方法来实现。其中一种方法称为肽质量指纹图谱(PMF),它将质谱(MS)数据与合适的已知蛋白质数据库中的搜索策略相结合,提供按得分排序的候选蛋白质列表。为此,已经提出了几种算法和软件工具。然而,评分方法,主要是结果的统计评估,可以得到显著改善。

结果

在这项工作中,我们提出了一种用于 PMF 蛋白质鉴定的 Perl 程序,称为 MsPI(质谱蛋白质鉴定)。所实现的评分方法来源于文献。MsPI 实现了一种从获得的光谱中去除污染物质量的策略。此外,MsPI 包括一种统计方法,除了评分值外,还为每个候选蛋白质分配一个 p 值。在包含 10 个蛋白质样本的数据集上,MsPI 得到的结果与使用另外两个软件工具,即 Piums 和 Mascot,得到的结果进行了比较。Piums 实现了 MsPI 中可用的评分方法之一,而 Mascot 是蛋白质鉴定领域中最常用的软件工具之一。MsPI 脚本可在网站 http://aimed11.unipv.it/MsPI 上下载。

结论

MsPI 的性能似乎优于 Piums 和 Mascot。事实上,在考虑的数据集上,MsPI 在其候选蛋白质列表中包含了十个“真实”蛋白质中的九个,而 Piums 在其列表中只包含了十个“真实”蛋白质中的四个。即使 Mascot 也正确地将十个“真实”蛋白质中的九个包含在候选列表中,它也提供了更长的候选列表,因此当样品中蛋白质的分子量大约已知时(例如通过 1-D/2-D 电泳凝胶),假阳性的数量会增加。此外,由于 MsPI 是一个 Perl 工具,它可以被最终用户轻松地扩展和定制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ce8/2762060/4e5f2d309f95/1471-2105-10-S12-S11-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验