Suppr超能文献

通过基于知识的方法预测肽与人免疫球蛋白 IV 的反应性。

Prediction of peptide reactivity with human IVIg through a knowledge-based approach.

机构信息

Laboratory of Biomedical Informatics Mario Stefanelli, Department of Computer Engineering and Systems Science, University of Pavia, Pavia, Italy.

出版信息

PLoS One. 2011;6(8):e23616. doi: 10.1371/journal.pone.0023616. Epub 2011 Aug 24.

Abstract

The prediction of antibody-protein (antigen) interactions is very difficult due to the huge variability that characterizes the structure of the antibodies. The region of the antigen bound to the antibodies is called epitope. Experimental data indicate that many antibodies react with a panel of distinct epitopes (positive reaction). The Challenge 1 of DREAM5 aims at understanding whether there exists rules for predicting the reactivity of a peptide/epitope, i.e., its capability to bind to human antibodies. DREAM 5 provided a training set of peptides with experimentally identified high and low reactivities to human antibodies. On the basis of this training set, the participants to the challenge were asked to develop a predictive model of reactivity. A test set was then provided to evaluate the performance of the model implemented so far.We developed a logistic regression model to predict the peptide reactivity, by facing the challenge as a machine learning problem. The initial features have been generated on the basis of the available knowledge and the information reported in the dataset. Our predictive model had the second best performance of the challenge. We also developed a method, based on a clustering approach, able to "in-silico" generate a list of positive and negative new peptide sequences, as requested by the DREAM5 "bonus round" additional challenge.The paper describes the developed model and its results in terms of reactivity prediction, and highlights some open issues concerning the propensity of a peptide to react with human antibodies.

摘要

由于抗体结构的巨大变异性,抗体-蛋白质(抗原)相互作用的预测非常困难。与抗体结合的抗原区域称为表位。实验数据表明,许多抗体与一组不同的表位(阳性反应)发生反应。 DREAM5 的挑战 1 旨在了解是否存在预测肽/表位反应性的规则,即其与人类抗体结合的能力。DREAM 5 提供了一组具有实验确定的高和低人类抗体反应性的肽作为训练集。在此训练集的基础上,要求参与者开发一种反应性预测模型。然后提供了一个测试集来评估迄今为止实施的模型的性能。我们开发了一种逻辑回归模型来预测肽的反应性,通过将挑战作为机器学习问题来解决。初始特征是基于可用知识和数据集报告的信息生成的。我们的预测模型在挑战中排名第二。我们还开发了一种基于聚类方法的方法,能够根据 DREAM5“附加赛”的额外挑战要求“在硅”中生成阳性和阴性新肽序列列表。本文描述了所开发的模型及其在反应性预测方面的结果,并强调了一些关于肽与人类抗体反应性的倾向的开放性问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc90/3160895/47ac7b552a2b/pone.0023616.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验