Suppr超能文献

美国 1988-2006 年黑色素瘤厚度趋势。

Melanoma thickness trends in the United States, 1988-2006.

机构信息

Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02908-4799, USA.

出版信息

J Invest Dermatol. 2010 Mar;130(3):793-7. doi: 10.1038/jid.2009.328. Epub 2009 Oct 15.

Abstract

Over the past two decades, numerous efforts have been initiated to improve screening and early detection of melanoma both in the United States and worldwide. It is commonly believed that these efforts have contributed to the stabilization of melanoma mortality, and that the proportion of thick melanoma with unfavorable prognosis is on the decline. Data obtained from 17 population-based cancer registries of the Surveillance Epidemiology and End Result (SEER) program of the National Cancer Institute for 1988-2006 were used to examine trends in melanoma tumor thickness. For malignant melanoma cases with recorded thickness, the proportionate distribution among four thickness categories (<or=1, 1.01-2, 2.01-4, and >4 mm) remained relatively stable over the 19-year study period, however, for melanomas resulting in death, the proportion of thick tumors increased. The most substantial change occurred in the proportion of melanoma in situ, which nearly doubled from 1988 to 2006. Surveillance and early detection efforts in the United States have not resulted in a substantial reduction in the proportion of tumors with prognostically unfavorable thickness. Continued improvement and new methods of screening, especially among demographics with higher incidence of thick tumors, is necessary.

摘要

在过去的二十年中,美国和世界范围内都开展了许多旨在改善黑色素瘤筛查和早期检测的工作。人们普遍认为,这些努力有助于稳定黑色素瘤的死亡率,且预后不良的厚型黑色素瘤的比例正在下降。本研究使用了美国国家癌症研究所的监测、流行病学和最终结果(SEER)项目的 17 个基于人群的癌症登记处的数据,来检测黑色素瘤肿瘤厚度的变化趋势。对于有记录厚度的恶性黑色素瘤病例,在 19 年的研究期间,四个厚度类别(<或=1、1.01-2、2.01-4 和>4mm)之间的比例分布相对稳定,然而,对于导致死亡的黑色素瘤,厚型肿瘤的比例增加。变化最显著的是原位黑色素瘤的比例,从 1988 年到 2006 年几乎翻了一番。美国的监测和早期检测工作并没有导致预后不良的厚型肿瘤比例的大幅下降。需要继续改进和开发新的筛查方法,特别是针对厚型肿瘤发病率较高的人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验