Suppr超能文献

利用临床病理和基因表达模型识别 I/IIA 期黑色素瘤患者中疾病复发的高危人群。

Identification of stage I/IIA melanoma patients at high risk for disease relapse using a clinicopathologic and gene expression model.

机构信息

Princess Máxima Center, Utrecht, the Netherlands.

SkylineDx B.V., Rotterdam, the Netherlands.

出版信息

Eur J Cancer. 2020 Nov;140:11-18. doi: 10.1016/j.ejca.2020.08.029. Epub 2020 Oct 5.

Abstract

PURPOSE

Patients with stage I/IIA cutaneous melanoma (CM) are currently not eligible for adjuvant therapies despite uncertainty in relapse risk. Here, we studied the ability of a recently developed model which combines clinicopathologic and gene expression variables (CP-GEP) to identify stage I/IIA melanoma patients who have a high risk for disease relapse.

PATIENTS AND METHODS

Archival specimens from a cohort of 837 consecutive primary CMs were used for assessing the prognostic performance of CP-GEP. The CP-GEP model combines Breslow thickness and patient age, with the expression of eight genes in the primary tumour. Our specific patient group, represented by 580 stage I/IIA patients, was stratified based on their risk of relapse: CP-GEP High Risk and CP-GEP Low Risk. The main clinical end-point of this study was five-year relapse-free survival (RFS).

RESULTS

Within the stage I/IIA melanoma group, CP-GEP identified a high-risk patient group (47% of total stage I/IIA patients) which had a considerably worse five-year RFS than the low-risk patient group; 74% (95% confidence interval [CI]: 67%-80%) versus 89% (95% CI: 84%-93%); hazard ratio [HR] = 2.98 (95% CI: 1.78-4.98); P < 0.0001. Of patients in the high-risk group, those who relapsed were most likely to do so within the first 3 years.

CONCLUSION

The CP-GEP model can be used to identify stage I/IIA patients who have a high risk for disease relapse. These patients may benefit from adjuvant therapy.

摘要

目的

尽管复发风险存在不确定性,但目前 I 期/IIA 期皮肤黑色素瘤 (CM) 患者不符合辅助治疗条件。在这里,我们研究了一种新开发的模型的能力,该模型结合了临床病理和基因表达变量 (CP-GEP),以确定具有高疾病复发风险的 I 期/IIA 期黑色素瘤患者。

患者和方法

使用来自 837 例连续原发性 CM 队列的存档标本来评估 CP-GEP 的预后表现。CP-GEP 模型结合了 Breslow 厚度和患者年龄,以及原发性肿瘤中八个基因的表达。我们的特定患者群体,由 580 名 I 期/IIA 期患者组成,根据其复发风险进行分层:CP-GEP 高风险和 CP-GEP 低风险。本研究的主要临床终点是五年无复发生存率 (RFS)。

结果

在 I 期/IIA 期黑色素瘤组中,CP-GEP 确定了一个高风险患者组(占总 I 期/IIA 期患者的 47%),其五年 RFS 明显低于低风险患者组;74%(95%置信区间 [CI]:67%-80%)与 89%(95% CI:84%-93%);危险比 [HR] = 2.98(95% CI:1.78-4.98);P<0.0001。在高风险组中,复发的患者最有可能在头 3 年内复发。

结论

CP-GEP 模型可用于识别具有高疾病复发风险的 I 期/IIA 期患者。这些患者可能受益于辅助治疗。

相似文献

引用本文的文献

9
Cancer immunity and immunotherapy beyond COVID-19.新冠疫情之外的癌症免疫与免疫疗法。
Cancer Immunol Immunother. 2023 Jul;72(7):2541-2548. doi: 10.1007/s00262-023-03411-9. Epub 2023 Mar 30.

本文引用的文献

5
The new era of adjuvant therapies for melanoma.黑色素瘤辅助治疗的新时代。
Nat Rev Clin Oncol. 2018 Sep;15(9):535-536. doi: 10.1038/s41571-018-0048-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验