Talapin Dmitri V, Shevchenko Elena V, Bodnarchuk Maryna I, Ye Xingchen, Chen Jun, Murray Christopher B
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
Nature. 2009 Oct 15;461(7266):964-7. doi: 10.1038/nature08439.
The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals; quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta(1.6)Te composition. Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers and tri-block copolymers, and micrometre-sized colloidal spheres have been arranged into quasicrystalline arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns. Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe(2)O(3) and 5-nm Au nanocrystals, 12.6-nm Fe(3)O(4) and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (3(3).4(2)) Archimedean tiling as the 'wetting layer' between the periodic and aperiodic phases.
1984年准晶体的发现改变了我们将有序固体视为周期性结构的观点,并引入了缺乏任何平移对称性的新的长程有序相。准晶体允许经典晶体学中禁止的对称操作,例如五重、八重、十重和十二重旋转,但却有尖锐的衍射峰。已观察到金属间化合物会形成亚稳态和能量稳定的准晶体;还报道了具有近似Ta(1.6)Te组成的碲化钽相具有准晶序。后来,在软物质中发现了准晶体,即有机树枝状大分子和三嵌段共聚物的超分子结构,并且通过使用产生准周期光学驻波图案的强激光束,微米级胶体球已被排列成准晶阵列。在此我们表明,胶体无机纳米粒子可以自组装成二元非周期超晶格。我们在不同的二元纳米粒子系统中观察到了具有十二重准晶序的组装体的形成:13.4纳米的Fe(2)O(3)和5纳米的金纳米晶体、12.6纳米的Fe(3)O(4)和4.7纳米的金纳米晶体,以及9纳米的PbS和3纳米的钯纳米晶体。这种组成上的灵活性表明,准晶纳米粒子组装体的形成并不需要粒子间相互作用的独特组合,而是一种由熵和简单粒子间势主导的一般球堆积现象。我们还发现,十二重准晶超晶格可以与普通晶体二元超晶格形成低缺陷界面,使用(3(3).4(2))阿基米德镶嵌的片段作为周期性和非周期性相之间的“润湿层”。