Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany.
J Synchrotron Radiat. 2009 Nov;16(Pt 6):737-41. doi: 10.1107/S0909049509039065. Epub 2009 Oct 3.
The diamond anvil cell (DAC) technique coupled with laser heating has become the most successful method for studying materials in the multimegabar pressure range at high temperatures. However, so far all DAC laser-heating systems have been stationary: they are linked either to certain equipment or to a beamline. Here, a portable laser-heating system for DACs has been developed which can be moved between various analytical facilities, including transfer from in-house to a synchrotron or between synchrotron beamlines. Application of the system is demonstrated in an example of nuclear inelastic scattering measurements of ferropericlase (Mg(0.88)Fe(0.12))O and h.c.p.-Fe(0.9)Ni(0.1) alloy, and X-ray absorption near-edge spectroscopy of (Mg(0.85)Fe(0.15))SiO(3) majorite at high pressures and temperatures. Our results indicate that sound velocities of h.c.p.-Fe(0.9)Ni(0.1) at pressures up to 50 GPa and high temperatures do not follow a linear relation with density.
金刚石对顶砧(DAC)技术与激光加热相结合,已成为在高温下研究兆巴压力范围内材料的最成功方法。然而,到目前为止,所有的 DAC 激光加热系统都是固定的:它们要么与特定的设备相连,要么与光束线相连。在这里,开发了一种可在各种分析设备之间移动的便携式 DAC 激光加热系统,包括从内部到同步加速器或在同步加速器光束线之间的转移。该系统的应用在铁镁尖晶石(Mg(0.88)Fe(0.12))O 和 h.c.p.-Fe(0.9)Ni(0.1) 合金的核非弹性散射测量以及高温高压下(Mg(0.85)Fe(0.15))SiO(3) 镁铝榴石的 X 射线吸收近边光谱学的一个例子中得到了证明。我们的结果表明,h.c.p.-Fe(0.9)Ni(0.1)的声速在高达 50 GPa 的压力和高温下不遵循与密度的线性关系。