Suppr超能文献

Arraycount,一种用于微孔阵列中自动细胞计数的算法。

Arraycount, an algorithm for automatic cell counting in microwell arrays.

机构信息

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA.

出版信息

Biotechniques. 2009 Sep;47(3):x-xvi. doi: 10.2144/000113202.

Abstract

Microscale technologies have emerged as a powerful tool for studying and manipulating biological systems and miniaturizing experiments. However, the lack of software complementing these techniques has made it difficult to apply them for many high-throughput experiments. This work establishes Arraycount, an approach to automatically count cells in microwell arrays. The procedure consists of fluorescent microscope imaging of cells that are seeded in microwells of a microarray system and then analyzing images via computer to recognize the array and count cells inside each microwell. To start counting, green and red fluorescent images (representing live and dead cells, respectively) are extracted from the original image and processed separately. A template-matching algorithm is proposed in which pre-defined well and cell templates are matched against the red and green images to locate microwells and cells. Subsequently, local maxima in the correlation maps are determined and local maxima maps are thresholded. At the end, the software records the cell counts for each detected microwell on the original image in high-throughput. The automated counting was shown to be accurate compared with manual counting, with a difference of approximately 1-2 cells per microwell: based on cell concentration, the absolute difference between manual and automatic counting measurements was 2.5-13%.

摘要

微尺度技术已经成为研究和操纵生物系统以及微型化实验的有力工具。然而,缺乏配套的软件使得这些技术难以应用于许多高通量实验。本工作建立了 Arraycount,这是一种自动对微孔阵列中的细胞进行计数的方法。该方法包括在微孔阵列系统的微孔中接种细胞的荧光显微镜成像,然后通过计算机分析图像以识别阵列并对每个微孔中的细胞进行计数。为了开始计数,从原始图像中提取绿色和红色荧光图像(分别代表活细胞和死细胞)并分别进行处理。提出了一种模板匹配算法,其中预定义的孔和细胞模板与红色和绿色图像进行匹配,以定位微孔和细胞。随后,确定相关图中的局部最大值,并对局部最大值图进行阈值处理。最后,软件在高通量下记录原始图像上每个检测到的微孔的细胞计数。与手动计数相比,自动计数显示出较高的准确性,每个微孔的差异约为 1-2 个细胞:基于细胞浓度,手动和自动计数测量之间的绝对差异为 2.5-13%。

相似文献

2
Prediction analysis and quality assessment of microwell array images.
Electrophoresis. 2018 Apr;39(7):948-956. doi: 10.1002/elps.201700460. Epub 2018 Jan 24.
8
Improving reliability of live/dead cell counting through automated image mosaicing.通过自动图像拼接提高活/死细胞计数的可靠性。
Comput Methods Programs Biomed. 2014 Dec;117(3):448-63. doi: 10.1016/j.cmpb.2014.09.004. Epub 2014 Sep 28.
10
Automatic cell counting with ImageJ.使用ImageJ进行细胞自动计数。
Anal Biochem. 2015 Mar 15;473:63-5. doi: 10.1016/j.ab.2014.12.007. Epub 2014 Dec 24.

引用本文的文献

9
Technology advancement for integrative stem cell analyses.用于综合干细胞分析的技术进步。
Tissue Eng Part B Rev. 2014 Dec;20(6):669-82. doi: 10.1089/ten.TEB.2014.0141. Epub 2014 Jul 3.

本文引用的文献

4
Bioimage informatics: a new area of engineering biology.生物图像信息学:工程生物学的一个新领域。
Bioinformatics. 2008 Sep 1;24(17):1827-36. doi: 10.1093/bioinformatics/btn346. Epub 2008 Jul 4.
7
A microwell array system for stem cell culture.一种用于干细胞培养的微孔板阵列系统。
Biomaterials. 2008 Feb;29(6):752-63. doi: 10.1016/j.biomaterials.2007.10.030. Epub 2007 Nov 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验