Suppr超能文献

利用多通道肌动描记术揭示前臂肌肉活动模式。

Uncovering patterns of forearm muscle activity using multi-channel mechanomyography.

机构信息

Bloorview Research Institute, Bloorview Kids Rehab, Inst of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.

出版信息

J Electromyogr Kinesiol. 2010 Oct;20(5):777-86. doi: 10.1016/j.jelekin.2009.09.003. Epub 2009 Oct 23.

Abstract

A coordinated activation of distal forearm muscles allows the hand and fingers to be shaped during movement and grasp. However, little is known about how the muscle activation patterns are reflected in multi-channel mechanomyogram (MMG) signals. The purpose of this study is to determine if multi-site MMG signals exhibit distinctive patterns of forearm muscle activity. MMG signals were recorded from forearm muscle sites of nine able-bodied participants during hand movement. By using 14 features selected by a genetic algorithm and classified by a linear discriminant analysis classifier (LDA), we show that MMG patterns are specific and consistent enough to identify 7+/-1 hand movements with an accuracy of 90+/-4%. MMG-based movement recognition required a minimum of three recording sites. Further, by classifying five classes of contraction patterns with 98+/-3% accuracy from MMG signals recorded from the residual limb of an amputee participant, we demonstrate that MMG shows pattern-specificity even in the absence of typical musculature. Multi-site monitoring of the RMS of MMG signals is suggested as a method of estimating the relative contributions of muscles to motor tasks. The patterns in MMG facilitate our understanding of the mechanical activity of muscles during movement.

摘要

远端前臂肌肉的协调激活可使手部和手指在运动和抓握过程中塑形。然而,对于肌肉激活模式如何反映在多通道肌电描记术(MMG)信号中,人们知之甚少。本研究旨在确定多部位 MMG 信号是否表现出前臂肌肉活动的独特模式。在手部运动过程中,从 9 名健康参与者的前臂肌肉部位记录 MMG 信号。通过使用遗传算法选择的 14 个特征,并由线性判别分析分类器(LDA)进行分类,我们表明 MMG 模式具有足够的特异性和一致性,能够以 90+/-4%的准确率识别 7+/-1 种手部运动。基于 MMG 的运动识别需要至少三个记录部位。此外,通过对截肢参与者残肢记录的 MMG 信号进行分类,以 98+/-3%的准确率对 5 种收缩模式进行分类,我们证明即使没有典型的肌肉组织,MMG 也显示出模式特异性。建议对 MMG 的 RMS 进行多部位监测,作为估计肌肉对运动任务相对贡献的一种方法。MMG 中的模式有助于我们了解肌肉在运动过程中的机械活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验