Department of Cell Biology, School of Osteopathic Medicine at Stratford, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA.
J Biol Chem. 2009 Dec 18;284(51):35702-13. doi: 10.1074/jbc.M109.053983.
Bacterial transcription elongation factors GreA and GreB stimulate the intrinsic RNase activity of RNA polymerase (RNAP), thus helping the enzyme to read through pausing and arresting sites on DNA. Gre factors also accelerate RNAP transition from initiation to elongation. Here, we characterized the molecular mechanism by which Gre factors facilitate transcription at two Escherichia coli promoters, PrplN and PompX, that require GreA for optimal in vivo activity. Using in vitro transcription assays, KMnO(4) footprinting, and Fe(2+)-induced hydroxyl radical mapping, we show that during transcription initiation at PrplN and PompX in the absence of Gre factors, RNAP falls into a condition of promoter-proximal transcriptional arrest that prevents production of full-length transcripts both in vitro and in vivo. Arrest occurs when RNAP synthesizes 9-14-nucleotide-long transcripts and backtracks by 5-7 (PrplN) or 2-4 (PompX) nucleotides. Initiation factor sigma(70) contributes to the formation of arrested complexes at both promoters. The signal for promoter-proximal arrest at PrplN is bipartite and requires two elements: the extended -10 promoter element and the initial transcribed region from positions +2 to +6. GreA and GreB prevent arrest at PrplN and PompX by inducing cleavage of the 3'-proximal backtracked portion of RNA at the onset of arrested complex formation and stimulate productive transcription by allowing RNAP to elongate the 5'-proximal transcript cleavage products in the presence of substrates. We propose that promoter-proximal arrest is a common feature of many bacterial promoters and may represent an important physiological target of regulation by transcript cleavage factors.
细菌转录延伸因子 GreA 和 GreB 刺激 RNA 聚合酶(RNAP)的内在 RNase 活性,从而帮助酶读取 DNA 上的暂停和停滞位点。Gre 因子还能加速 RNAP 从起始到延伸的转变。在这里,我们描述了 Gre 因子促进两个大肠杆菌启动子 PrplN 和 PompX 转录的分子机制,这两个启动子需要 GreA 才能发挥最佳的体内活性。我们使用体外转录测定、KMnO4 足迹分析和 Fe2+诱导的羟基自由基作图,表明在没有 Gre 因子的情况下,在 PrplN 和 PompX 进行转录起始时,RNAP 进入到一种启动子近端转录停滞的状态,阻止了全长转录本的产生,无论是在体外还是在体内。当 RNAP 合成 9-14 个核苷酸长的转录本并向后退 5-7(PrplN)或 2-4(PompX)个核苷酸时,就会发生停滞。起始因子 sigma(70) 有助于在两个启动子上形成停滞复合物。PrplN 上启动子近端停滞的信号是二分的,需要两个元件:扩展的-10 启动子元件和从+2 到+6 位的初始转录区。GreA 和 GreB 通过在停滞复合物形成时诱导 3'近端回退 RNA 的切割来防止 PrplN 和 PompX 上的停滞,并通过允许 RNAP 在存在底物的情况下延伸 5'近端转录本切割产物来刺激有效的转录。我们提出,启动子近端停滞是许多细菌启动子的一个共同特征,可能代表转录切割因子调控的一个重要生理靶点。