Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.
J Bacteriol. 2010 Jan;192(1):77-85. doi: 10.1128/JB.00741-09.
To ensure survival in the host, bacteria have evolved strategies to acquire the essential element iron. In Neisseria gonorrhoeae, the ferric uptake regulator Fur regulates metabolism through transcriptional control of iron-responsive genes by binding conserved Fur box (FB) sequences in promoters during iron-replete growth. Our previous studies showed that Fur also controls the transcription of secondary regulators that may, in turn, control pathways important to pathogenesis, indicating an indirect role for Fur in controlling these downstream genes. To better define the iron-regulated cascade of transcriptional control, we combined three global strategies--temporal transcriptome analysis, genomewide in silico FB prediction, and Fur titration assays (FURTA)--to detect genomic regions able to bind Fur in vivo. The majority of the 300 iron-repressed genes were predicted to be of unknown function, followed by genes involved in iron metabolism, cell communication, and intermediary metabolism. The 107 iron-induced genes encoded hypothetical proteins or energy metabolism functions. We found 28 predicted FBs in FURTA-positive clones in the promoters and within the open reading frames of iron-repressed genes. We found lower levels of conservation at critical thymidine residues involved in Fur binding in the FB sequence logos of FURTA-positive clones with intragenic FBs than in the sequence logos generated from FURTA-positive promoter regions. In electrophoretic mobility shift assay studies, intragenic FBs bound Fur with a lower affinity than intergenic FBs. Our findings further indicate that transcription under iron stress is indirectly controlled by Fur through 12 potential secondary regulators.
为了在宿主中生存,细菌已经进化出获取必需元素铁的策略。在淋病奈瑟菌中,铁摄取调节因子 Fur 通过在铁充足生长期间结合启动子中的保守 Fur 盒(FB)序列来转录控制铁响应基因,从而调节代谢。我们之前的研究表明,Fur 还控制二级调节剂的转录,这些调节剂反过来可能控制对发病机制很重要的途径,这表明 Fur 在控制这些下游基因方面具有间接作用。为了更好地定义铁调节的转录控制级联,我们结合了三种全局策略 - 时间转录组分析、全基因组计算机 FB 预测和 Fur 滴定测定(FURTA) - 来检测能够在体内结合 Fur 的基因组区域。在受铁抑制的 300 个基因中,大多数被预测为未知功能,其次是涉及铁代谢、细胞通讯和中间代谢的基因。107 个受铁诱导的基因编码假设蛋白或能量代谢功能。我们在 FURTA 阳性克隆的启动子中和受铁抑制基因的开放阅读框中发现了 28 个预测的 FB。我们发现,在具有基因内 FB 的 FURTA 阳性克隆的 FB 序列标志中,与 Fur 结合的关键胸苷残基的保守性较低,而在从 FURTA 阳性启动子区域生成的序列标志中则较低。在电泳迁移率变动分析研究中,基因内 FB 与 Fur 的结合亲和力低于基因间 FB。我们的研究结果进一步表明,在铁胁迫下的转录是通过 12 个潜在的二级调节剂间接受 Fur 控制的。