Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA.
Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H52-65. doi: 10.1152/ajpheart.00546.2009. Epub 2009 Oct 23.
This study presents a multicellular computational model of a rat mesenteric arteriole to investigate the signal transduction mechanisms involved in the generation of conducted vasoreactivity. The model comprises detailed descriptions of endothelial (ECs) and smooth muscle (SM) cells (SMCs), coupled by nonselective gap junctions. With strong myoendothelial coupling, local agonist stimulation of the EC or SM layer causes local changes in membrane potential (V(m)) that are conducted electrotonically, primarily through the endothelium. When myoendothelial coupling is weak, signals initiated in the SM conduct poorly, but the sensitivity of the SMCs to current injection and agonist stimulation increases. Thus physiological transmembrane currents can induce different levels of local V(m) change, depending on cell's gap junction connectivity. The physiological relevance of current and voltage clamp stimulations in intact vessels is discussed. Focal agonist stimulation of the endothelium reduces cytosolic calcium (intracellular Ca(2+) concentration) in the prestimulated SM layer. This SMC Ca(2+) reduction is attributed to a spread of EC hyperpolarization via gap junctions. Inositol (1,4,5)-trisphosphate, but not Ca(2+), diffusion through homocellular gap junctions can increase intracellular Ca(2+) concentration in neighboring ECs. The small endothelial Ca(2+) spread can amplify the total current generated at the local site by the ECs and through the nitric oxide pathway, by the SMCs, and thus reduces the number of stimulated cells required to induce distant responses. The distance of the electrotonic and Ca(2+) spread depends on the magnitude of SM prestimulation and the number of SM layers. Model results are consistent with experimental data for vasoreactivity in rat mesenteric resistance arteries.
本研究提出了一个大鼠肠系膜小动脉的多细胞计算模型,以研究参与产生传导血管反应性的信号转导机制。该模型包括内皮细胞 (ECs) 和平滑肌细胞 (SMCs) 的详细描述,通过非选择性缝隙连接耦合。在强肌内皮偶联的情况下,EC 或 SM 层的局部激动剂刺激会导致膜电位 (V(m)) 的局部变化,这些变化主要通过内皮细胞进行电传导。当肌内皮偶联较弱时,SM 中启动的信号传导不良,但 SMC 对电流注入和激动剂刺激的敏感性增加。因此,生理跨膜电流可以根据细胞缝隙连接连接性引起不同水平的局部 V(m) 变化。讨论了在完整血管中电流和电压钳刺激的生理相关性。内皮细胞的局部激动剂刺激会降低预刺激 SM 层中的细胞质钙 (细胞内 Ca(2+)浓度)。这种 SMC Ca(2+)减少归因于 EC 超极化通过缝隙连接传播。肌醇 (1,4,5)-三磷酸,但不是 Ca(2+),通过同源细胞缝隙连接扩散可以增加相邻 EC 中的细胞内 Ca(2+)浓度。内皮细胞的小 Ca(2+)传播可以放大 EC 产生的局部电流,通过一氧化氮途径,通过 SMC 产生的局部电流,从而减少诱导远处反应所需的刺激细胞数量。电传导和 Ca(2+)传播的距离取决于 SM 预刺激的幅度和 SM 层的数量。模型结果与大鼠肠系膜阻力动脉血管反应性的实验数据一致。