Knowledge Intensive Services, VTT Technical Research Centre of Finland, PO Box 1300 street address Tekniikankatu 1, FIN-33101 Tampere, Finland.
Neuroimage. 2010 Feb 1;49(3):2352-65. doi: 10.1016/j.neuroimage.2009.10.026. Epub 2009 Oct 24.
We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity modelling based on segmentation using expectation maximisation (EM) and optimisation via graph cuts. The segmentation pipeline is evaluated with two data cohorts: IBSR data (N=18, six subcortial structures: thalamus, caudate, putamen, pallidum, hippocampus, amygdala) and ADNI data (N=60, hippocampus). The average similarity index between automatically and manually generated volumes was 0.849 (IBSR, six subcortical structures) and 0.880 (ADNI, hippocampus). The correlation coefficient for hippocampal volumes was 0.95 with the ADNI data. The computation time using a standard multicore PC computer was about 3-4 min. Our results compare favourably with other recently published results.
我们提出了一种用于多图谱脑 MRI 分割的优化流水线。考虑了分割的准确性和速度。我们研究了非刚性配准中使用的不同相似性度量。我们表明,在不影响准确性的情况下,可以在配准中使用强度归一化图像的强度差异来代替标准归一化互信息,从而将计算时间减少三倍。我们还研究和验证了不同的图谱选择方法。最后,我们提出了两种基于期望最大化 (EM) 分割和基于分割的基于图切割的强度建模的多图谱分割组合的新方法。该分割流水线使用两个数据集进行了评估:IBSR 数据集(N=18,六个皮质下结构:丘脑、尾状核、壳核、苍白球、海马体、杏仁核)和 ADNI 数据集(N=60,海马体)。自动生成的体积与手动生成的体积之间的平均相似性指数为 0.849(IBSR,六个皮质下结构)和 0.880(ADNI,海马体)。与 ADNI 数据相比,海马体体积的相关系数为 0.95。使用标准多核 PC 计算机的计算时间约为 3-4 分钟。我们的结果与其他最近发表的结果相比表现出色。