Suppr超能文献

无监督的脑磁共振图像异质人群分割、聚类和组间配准。

Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images.

出版信息

IEEE Trans Med Imaging. 2014 Feb;33(2):201-24. doi: 10.1109/TMI.2013.2270114. Epub 2013 Jun 19.

Abstract

Population analysis of brain morphology from magnetic resonance images contributes to the study and understanding of neurological diseases. Such analysis typically involves segmentation of a large set of images and comparisons of these segmentations between relevant subgroups of images (e.g., "normal" versus "diseased"). The images of each subgroup are usually selected in advance in a supervised way based on clinical knowledge. Their segmentations are typically guided by one or more available atlases, assumed to be suitable for the images at hand. We present a data-driven probabilistic framework that simultaneously performs atlas-guided segmentation of a heterogeneous set of brain MR images and clusters the images in homogeneous subgroups, while constructing separate probabilistic atlases for each cluster to guide the segmentation. The main benefits of integrating segmentation, clustering and atlas construction in a single framework are that: 1) our method can handle images of a heterogeneous group of subjects and automatically identifies homogeneous subgroups in an unsupervised way with minimal prior knowledge, 2) the subgroups are formed by automatical detection of the relevant morphological features based on the segmentation, 3) the atlases used by our method are constructed from the images themselves and optimally adapted for guiding the segmentation of each subgroup, and 4) the probabilistic atlases represent the morphological pattern that is specific for each subgroup and expose the groupwise differences between different subgroups. We demonstrate the feasibility of the proposed framework and evaluate its performance with respect to image segmentation, clustering and atlas construction on simulated and real data sets including the publicly available BrainWeb and ADNI data. It is shown that combined segmentation and atlas construction leads to improved segmentation accuracy. Furthermore, it is demonstrated that the clusters generated by our unsupervised framework largely coincide with the clinically determined subgroups in case of disease-specific differences in brain morphology and that the differences between the cluster-specific atlases are in agreement with the expected disease-specific patterns, indicating that our method is capable of detecting the different modes in a population. Our method can thus be seen as a comprehensive image-driven population analysis framework that can contribute to the detection of novel subgroups and distinctive image features, potentially leading to new insights in the brain development and disease.

摘要

基于磁共振成像的脑形态学分析有助于研究和理解神经疾病。这种分析通常涉及对大量图像进行分割,并对相关图像子组(例如,“正常”与“患病”)之间的这些分割进行比较。每个子组的图像通常是根据临床知识预先以监督方式选择的。它们的分割通常由一个或多个可用图谱引导,这些图谱被假定适合当前的图像。我们提出了一个数据驱动的概率框架,该框架可以同时对一组异质的脑磁共振图像进行图谱引导分割,并将图像聚类为同质子组,同时为每个子组构建单独的概率图谱以指导分割。将分割、聚类和图谱构建集成到单个框架中的主要好处是:1)我们的方法可以处理异质组的图像,并自动以无监督的方式识别出同质的子组,而无需先验知识;2)子组是通过基于分割自动检测相关形态特征形成的;3)我们的方法使用的图谱是从图像本身构建的,并针对引导每个子组的分割进行了优化;4)概率图谱代表了特定于每个子组的形态模式,并揭示了不同子组之间的组间差异。我们在模拟和真实数据集上展示了所提出框架的可行性,并针对图像分割、聚类和图谱构建评估了其性能,包括公开的 BrainWeb 和 ADNI 数据集。结果表明,联合分割和图谱构建可提高分割准确性。此外,我们的无监督框架生成的聚类在脑形态存在特定疾病差异的情况下,与临床确定的子组大致吻合,并且群集特定的图谱之间的差异与预期的疾病特异性模式一致,这表明我们的方法能够检测到群体中的不同模式。因此,我们的方法可以被视为一种全面的基于图像的群体分析框架,可以帮助发现新的子组和独特的图像特征,从而为大脑发育和疾病提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验