Suppr超能文献

纳米颗粒制剂提高难溶性药物的口服生物利用度:方法、实验证据与理论

Nanoparticle Formulation Increases Oral Bioavailability of Poorly Soluble Drugs: Approaches Experimental Evidences and Theory.

作者信息

Jia Lee

机构信息

Developmental Therapeutics Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.

出版信息

Curr Nanosci. 2005 Nov 1;1(3):237-243. doi: 10.2174/157341305774642939.

Abstract

The increasing frequency at which poorly soluble new chemical entities are being discovered raises concerns in the pharmaceutical industry about drugability associated with erratic dissolution and low bioavailability of these hydrophobic compounds. Nanonization provides a plausible pharmaceutical basis for enhancing oral bioavailability and therapeutic effectiveness of these compounds by increasing their surface area. This paper surveys methods available to pharmaceutical manufacturing nanoparticles, including wet chemical processes, media milling, high pressure homogenization, gas-phase synthesis, and form-in-place processes, and elaborates physicochemical rational and gastrointestinal physiological basis upon which nano-drugs can be readily absorbed. Relevant examples are illustrated to show that nano-drugs permeate Caco-2 cell monolayer fast and are well absorbed into animal systemic circulation with high T(max) and AUC, resulting in oral bioavailability higher than their counterpart micro-drugs. The size-dependent permeability and bioavailability should be given particular consideration in the development of potent and selective drug candidates with poor aqueous solubility.

摘要

越来越多难溶性新化学实体的发现频率,引发了制药行业对这些疏水性化合物因溶解不稳定和生物利用度低而导致的成药性的担忧。纳米化通过增加难溶性化合物的表面积,为提高其口服生物利用度和治疗效果提供了一个合理的药学基础。本文综述了制药领域制备纳米颗粒的可用方法,包括湿化学法、介质研磨法、高压均质法、气相合成法和原位成型法,并阐述了纳米药物易于吸收的物理化学原理和胃肠生理学基础。文中列举了相关实例,表明纳米药物能快速透过Caco-2细胞单层,并以较高的T(max)和AUC被很好地吸收进入动物体循环,从而使其口服生物利用度高于相应的微米药物。在开发水溶性差的强效和选择性候选药物时,应特别考虑粒径依赖性通透性和生物利用度。

相似文献

2
Nanosuspensions: Enhancing drug bioavailability through nanonization.纳米混悬液:通过纳米化提高药物生物利用度。
Ann Pharm Fr. 2025 Mar;83(2):251-271. doi: 10.1016/j.pharma.2024.06.003. Epub 2024 Jun 28.

引用本文的文献

2
Molecular Mechanisms of Chronic Pain and Therapeutic Interventions.慢性疼痛的分子机制与治疗干预
MedComm (2020). 2025 Aug 7;6(8):e70325. doi: 10.1002/mco2.70325. eCollection 2025 Aug.

本文引用的文献

5
Nanosuspensions in drug delivery.药物递送中的纳米混悬液。
Nat Rev Drug Discov. 2004 Sep;3(9):785-96. doi: 10.1038/nrd1494.
8
Real-time monitoring of growing nanoparticles.生长中纳米颗粒的实时监测
Science. 2003 May 30;300(5624):1416-9. doi: 10.1126/science.1082146.
9
DNA in a material world.物质世界中的DNA。
Nature. 2003 Jan 23;421(6921):427-31. doi: 10.1038/nature01406.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验