Suppr超能文献

二氧化碳作为促进剂在动物减压至模拟高度时气泡的形成和生长中的作用。

CARBON DIOXIDE AS A FACILITATING AGENT IN THE INITIATION AND GROWTH OF BUBBLES IN ANIMALS DECOMPRESSED TO SIMULATED ALTITUDES.

机构信息

Department of Biology, Stanford University.

出版信息

J Gen Physiol. 1945 Jan 20;28(3):225-40. doi: 10.1085/jgp.28.3.225.

Abstract
  1. Rats killed in a variety of ways (broken neck, nembutal, anoxia, electrocution) may undergo extensive bubble formation when subsequently decompressed from atmospheric pressure to simulated altitudes of 50,000 feet. On autopsy at sea level, large numbers of bubbles are found throughout the vascular system in the majority of animals. These bubbles appear to originate in small vessels deep within muscular regions, later spreading widely in arterial and venous systems. Dead rabbits and frogs also bubble profusely on decompression. 2. Bubble formation in dead animals is attributed primarily to the accumulation of CO(2), derived from residual cellular respiration after death, and from anaerobic glycolysis with attendant decomposition of bicarbonates in blood and tissue fluids. If anaerobic glycolysis is inhibited by using sodium iodoacetate as a lethal agent, bubble formation is greatly reduced or lacking on subsequent decompression. 3. Experiments in vitro suggest that high concentrations of CO(2) favor bubble formation by reducing the degree of mechanical disturbance necessary. 4. Administration of CO(2) in high concentrations to living frogs lowers the minimum altitude (pressure equivalent) at which bubble formation occurs, with exercise, in untreated animals. Pre-treatment with CO(2) also reduces the degree of muscular activity necessary for bubbles to form in frogs at higher altitudes. 5. Analyses have been made of the gas content of bubbles taken directly from the large veins of decompressed frogs and rats. In living animals the figures obtained indicate rapid equilibration with gas tensions in the blood. Bubbles taken from decompressed dead rats may contain 60-80 per cent CO(2). 6. The bearing of these experiments on the mechanisms of bubble initiation and growth in normal living animals is discussed. Reasons are given for suggesting that CO(2), due largely to its high dissolved concentration in localized active regions, may be an outstanding factor in the initiation and early growth of bubbles which in later stages are expanded and maintained principally by nitrogen.
摘要
  1. 用各种方法(折断颈椎、戊巴比妥钠、缺氧、电休克)杀死的大鼠,当随后从大气压减压至模拟 50000 英尺的高空时,可能会发生广泛的气泡形成。在海平面进行尸检时,大多数动物的血管系统中都发现了大量气泡。这些气泡似乎起源于肌肉深处的小血管,随后在动脉和静脉系统中广泛扩散。死兔和死蛙在减压时也会大量起泡。

  2. 死动物中的气泡形成主要归因于二氧化碳的积累,二氧化碳来源于死后细胞呼吸的残余物,以及无氧糖酵解伴随血液和组织液中碳酸氢盐的分解。如果使用碘乙酸钠作为致死剂抑制无氧糖酵解,随后减压时气泡形成会大大减少或缺乏。

  3. 体外实验表明,高浓度的 CO2 通过减少形成气泡所需的机械干扰程度,有利于气泡形成。

  4. 向活蛙中给予高浓度的 CO2 会降低未处理动物在运动时发生气泡形成的最小海拔(压力当量)。预先用 CO2 处理还会降低青蛙在较高海拔形成气泡所需的肌肉活动程度。

  5. 直接从减压后的青蛙和大鼠大静脉中取出的气泡的气体含量进行了分析。在活体动物中,所得数据表明与血液中的气体张力迅速平衡。从减压后的死鼠中取出的气泡可能含有 60-80%的 CO2。

  6. 讨论了这些实验对正常活体动物中气泡起始和生长机制的影响。给出了由于 CO2 在局部活跃区域中高溶解浓度,可能是气泡起始和早期生长的突出因素的原因,在后期阶段,气泡主要通过氮气扩展和维持。

相似文献

2
MUSCULAR ACTIVITY AND BUBBLE FORMATION IN ANIMALS DECOMPRESSED TO SIMULATED ALTITUDES.
J Gen Physiol. 1945 Jan 20;28(3):213-23. doi: 10.1085/jgp.28.3.213.
4
ADDITIONAL MECHANISMS FOR THE ORIGIN OF BUBBLES IN ANIMALS DECOMPRESSED TO SIMULATED ALTITUDES.
J Gen Physiol. 1945 Jan 20;28(3):253-8. doi: 10.1085/jgp.28.3.253.
5
DCS or DCI? The difference and why it matters.
Diving Hyperb Med. 2019 Sep 30;49(3):152-153. doi: 10.28920/dhm49.3.152-153.
7
Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures.
J Appl Physiol (1985). 2008 Nov;105(5):1492-7. doi: 10.1152/japplphysiol.90840.2008. Epub 2008 Aug 28.
8
Expansion of bubbles under a pulsatile flow regime in decompressed ovine blood vessels.
Respir Physiol Neurobiol. 2016 Feb 1;222:1-5. doi: 10.1016/j.resp.2015.11.010. Epub 2015 Nov 22.
9
Bubble formation in crustaceans following decompression from hyperbaric gas exposures.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Feb;56(2):513-9. doi: 10.1152/jappl.1984.56.2.513.
10
Threshold altitude for bubble decay and stabilization in rat adipose tissue at hypobaric exposures.
Aviat Space Environ Med. 2013 Jul;84(7):675-83. doi: 10.3357/asem.3489.2013.

引用本文的文献

2
Effects of CO₂ on the occurrence of decompression sickness: review of the literature.
Diving Hyperb Med. 2024 Jun 30;54(2):110-119. doi: 10.28920/dhm54.2.110-119.
3
Advances in research on the impacts of anti-submarine sonar on beaked whales.
Proc Biol Sci. 2019 Jan 30;286(1895):20182533. doi: 10.1098/rspb.2018.2533.
5
How man-made interference might cause gas bubble emboli in deep diving whales.
Front Physiol. 2014 Jan 28;5:13. doi: 10.3389/fphys.2014.00013. eCollection 2014.
6
Compositional discrimination of decompression and decomposition gas bubbles in bycaught seals and dolphins.
PLoS One. 2013 Dec 19;8(12):e83994. doi: 10.1371/journal.pone.0083994. eCollection 2013.
8
Differentiation at autopsy between in vivo gas embolism and putrefaction using gas composition analysis.
Int J Legal Med. 2013 Mar;127(2):437-45. doi: 10.1007/s00414-012-0783-6. Epub 2012 Oct 23.
9
Decompression vs. Decomposition: Distribution, Amount, and Gas Composition of Bubbles in Stranded Marine Mammals.
Front Physiol. 2012 Jun 4;3:177. doi: 10.3389/fphys.2012.00177. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验