Suppr超能文献

树突状缝隙连接的新作用及其与快速放电抑制性神经元中丘脑皮质电导相互作用的潜在机制。

A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons.

作者信息

Sun Qian-Quan

机构信息

Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA.

出版信息

BMC Neurosci. 2009 Oct 29;10:131. doi: 10.1186/1471-2202-10-131.

Abstract

BACKGROUND

Little is known about the roles of dendritic gap junctions (GJs) of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms.

RESULTS

Under physiological conditions, excitatory post-junctional potentials (EPJPs) interact with thalamocortical (TC) inputs within an unprecedented few milliseconds (i.e. over 200 Hz) to enhance the firing probability and synchrony of coupled fast-spiking (FS) cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1) rapid capacitive current (Icap) underlies the activation of voltage-gated sodium channels; 2) there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3) cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4) synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy.

CONCLUSION

Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz). Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

摘要

背景

关于抑制性中间神经元的树突间隙连接(GJs)在调节感觉皮层中感觉诱导反应的时间特性方面所起的作用,目前所知甚少。本研究结合使用电生理双膜片钳记录和计算模拟方法,来研究GJs在桶状皮层IV层感觉介导的前馈抑制反应中的新作用及其潜在机制。

结果

在生理条件下,兴奋性突触后电位(EPJPs)在前所未有的几毫秒内(即超过200Hz)与丘脑皮质(TC)输入相互作用,以提高耦合的快发放(FS)细胞的放电概率和同步性。树突GJ耦合使兴奋性棘状星状细胞的同步性增加四倍,并显著提高了动作电位传递效率。该模型揭示了以下新机制:1)快速电容电流(Icap)是电压门控钠通道激活的基础;2)TC输入和EPJP的Icap有效耦合的时间不到2毫秒;3)具有树突GJs的细胞具有更大的输入电导,对较弱输入的膜反应更小;4)GJ耦合导致抑制性网络中的同步性,减少了散在的侧向抑制,并提高了TC传递效率。

结论

新皮质抑制性网络的树突GJs在调制高频带(>200Hz)下感觉诱导的前馈抑制和兴奋性反应的强度和时间特性方面可产生非常强大的作用。快速电容电流被确定为两种瞬态突触电导之间相互作用的主要机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9559/2773785/671ad06a2153/1471-2202-10-131-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验