Suppr超能文献

“用进废退”谜题中缺失的部分:抑制作用是受活动调节,还是自行发挥作用?

The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord?

作者信息

Sun Qian-Quan

机构信息

Laboratory of Neural Development and Learning, Department of Zoology and Physiology and Neuroscience Program, University of Wyoming, Laramie, WY, USA.

出版信息

Rev Neurosci. 2007;18(3-4):295-310. doi: 10.1515/revneuro.2007.18.3-4.295.

Abstract

We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?

摘要

我们对兴奋性突触的活动依赖性可塑性以及(在较小程度上)非活动依赖性可塑性的潜在机制有了深入了解。最近研究表明,皮层抑制在感觉可塑性关键期的形成中起着至关重要的作用。因此,通过抑制来塑造神经回路可能是活动组织或重新组织脑回路的一种常见机制。新皮层中兴奋与抑制平衡的紊乱会引发异常活动,如癫痫发作和皮层发育异常。然而,新皮层抑制性网络出生后依赖经验的成熟过程及其潜在机制仍不清楚。在单个回路水平上实现平衡功能,匹配兴奋与抑制的机制至关重要。本综述的目的是加深我们对发育中的抑制性网络如何适应感觉输入并与发育中的兴奋性网络保持平衡的机制的理解。讨论集中在以下与新皮层抑制性网络依赖经验的可塑性相关的问题上:1)GABA能抑制在新皮层回路出生后的成熟过程中起什么作用?2)新皮层抑制性回路的成熟是依赖活动进行的,还是独立于感觉输入而发育的?3)活动调节抑制性网络的方式与调节兴奋性网络的方式相同吗?4)抑制性网络依赖活动成熟的分子和细胞机制是什么?5)抑制性网络依赖经验的可塑性对感觉皮层网络处理有哪些功能优势?

相似文献

2
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
Science. 2011 Dec 16;334(6062):1569-73. doi: 10.1126/science.1211095. Epub 2011 Nov 10.
4
Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
J Neurosci. 2019 Aug 28;39(35):6865-6878. doi: 10.1523/JNEUROSCI.3039-18.2019. Epub 2019 Jul 12.
5
Synaptic mechanisms for plasticity in neocortex.
Annu Rev Neurosci. 2009;32:33-55. doi: 10.1146/annurev.neuro.051508.135516.
6
Adenosine effects on inhibitory synaptic transmission and excitation-inhibition balance in the rat neocortex.
J Physiol. 2015 Feb 15;593(4):825-41. doi: 10.1113/jphysiol.2014.279901. Epub 2015 Jan 7.
7
Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities.
Nat Neurosci. 2008 May;11(5):535-7. doi: 10.1038/nn.2105. Epub 2008 Mar 30.
8
Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits.
Biol Psychiatry. 2017 May 15;81(10):821-831. doi: 10.1016/j.biopsych.2016.09.017. Epub 2016 Sep 29.
9
Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance.
Neuron. 2020 Jun 3;106(5):842-854.e4. doi: 10.1016/j.neuron.2020.03.002. Epub 2020 Mar 25.
10
Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits.
J Neurophysiol. 2008 Oct;100(4):1983-94. doi: 10.1152/jn.90635.2008. Epub 2008 Aug 13.

引用本文的文献

1
A Critical Role of Inhibition in Temporal Processing Maturation in the Primary Auditory Cortex.
Cereb Cortex. 2018 May 1;28(5):1610-1624. doi: 10.1093/cercor/bhx057.
3
GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons.
Neural Plast. 2012;2012:892784. doi: 10.1155/2012/892784. Epub 2012 Jun 26.
4
Cortical GABAergic interneurons in cross-modal plasticity following early blindness.
Neural Plast. 2012;2012:590725. doi: 10.1155/2012/590725. Epub 2012 Jun 7.
5
The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms.
Front Neuroanat. 2012 Feb 20;6:6. doi: 10.3389/fnana.2012.00006. eCollection 2012.
6
Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.
PLoS Comput Biol. 2012 Jan;8(1):e1002334. doi: 10.1371/journal.pcbi.1002334. Epub 2012 Jan 26.
7
A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12131-6. doi: 10.1073/pnas.1105296108. Epub 2011 Jul 5.
8
Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia.
Neuropharmacology. 2012 Mar;62(3):1322-31. doi: 10.1016/j.neuropharm.2011.01.049. Epub 2011 Feb 17.
9
Inhibitory plasticity underlies visual deprivation-induced loss of receptive field refinement in the adult superior colliculus.
Eur J Neurosci. 2011 Jan;33(1):58-68. doi: 10.1111/j.1460-9568.2010.07478.x. Epub 2010 Nov 3.

本文引用的文献

1
Potentiation of cortical inhibition by visual deprivation.
Nature. 2006 Sep 7;443(7107):81-4. doi: 10.1038/nature05079. Epub 2006 Aug 23.
2
Major effects of sensory experiences on the neocortical inhibitory circuits.
J Neurosci. 2006 Aug 23;26(34):8691-701. doi: 10.1523/JNEUROSCI.2478-06.2006.
3
Activity-dependent bidirectional modification of inhibitory synaptic transmission in rat subthalamic neurons.
J Neurosci. 2006 Jul 12;26(28):7321-7. doi: 10.1523/JNEUROSCI.4656-05.2006.
4
Variability, compensation and homeostasis in neuron and network function.
Nat Rev Neurosci. 2006 Jul;7(7):563-74. doi: 10.1038/nrn1949.
5
Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex.
Nat Neurosci. 2006 May;9(5):660-8. doi: 10.1038/nn1689. Epub 2006 Apr 23.
6
Effects of visual experience on activity-dependent gene regulation in cortex.
Nat Neurosci. 2006 May;9(5):650-9. doi: 10.1038/nn1674. Epub 2006 Apr 2.
7
Cognitive problems related to epilepsy syndromes, especially malignant epilepsies.
Seizure. 2006 Jun;15(4):227-34. doi: 10.1016/j.seizure.2006.02.019. Epub 2006 Mar 24.
8
Synaptic scaling mediated by glial TNF-alpha.
Nature. 2006 Apr 20;440(7087):1054-9. doi: 10.1038/nature04671. Epub 2006 Mar 19.
9
Impaired synaptic plasticity in a rat model of tuberous sclerosis.
Eur J Neurosci. 2006 Feb;23(3):686-92. doi: 10.1111/j.1460-9568.2006.04594.x.
10
Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors.
Nat Neurosci. 2006 Mar;9(3):372-80. doi: 10.1038/nn1649. Epub 2006 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验