Suppr超能文献

从神经元生物物理学到新皮质第2/3层大篮状细胞电耦合网络中的方向选择性

From Neuron Biophysics to Orientation Selectivity in Electrically Coupled Networks of Neocortical L2/3 Large Basket Cells.

作者信息

Amsalem Oren, Van Geit Werner, Muller Eilif, Markram Henry, Segev Idan

机构信息

Department of Neurobiology.

Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, 1202 Geneva, Switzerland.

出版信息

Cereb Cortex. 2016 Aug;26(8):3655-3668. doi: 10.1093/cercor/bhw166. Epub 2016 Jun 9.

Abstract

In the neocortex, inhibitory interneurons of the same subtype are electrically coupled with each other via dendritic gap junctions (GJs). The impact of multiple GJs on the biophysical properties of interneurons and thus on their input processing is unclear. The present experimentally based theoretical study examined GJs in L2/3 large basket cells (L2/3 LBCs) with 3 goals in mind: (1) To evaluate the errors due to GJs in estimating the cable properties of individual L2/3 LBCs and suggest ways to correct these errors when modeling these cells and the networks they form; (2) to bracket the GJ conductance value (0.05-0.25 nS) and membrane resistivity (10 000-40 000 Ω cm(2)) of L2/3 LBCs; these estimates are tightly constrained by in vitro input resistance (131 ± 18.5 MΩ) and the coupling coefficient (1-3.5%) of these cells; and (3) to explore the functional implications of GJs, and show that GJs: (i) dynamically modulate the effective time window for synaptic integration; (ii) improve the axon's capability to encode rapid changes in synaptic inputs; and (iii) reduce the orientation selectivity, linearity index, and phase difference of L2/3 LBCs. Our study provides new insights into the role of GJs and calls for caution when using in vitro measurements for modeling electrically coupled neuronal networks.

摘要

在新皮层中,同一亚型的抑制性中间神经元通过树突缝隙连接(GJs)相互电耦合。多个缝隙连接对中间神经元生物物理特性以及对其输入处理的影响尚不清楚。本基于实验的理论研究在考虑三个目标的情况下研究了第2/3层大篮状细胞(L2/3 LBCs)中的缝隙连接:(1)评估在估计单个L2/3 LBCs的电缆特性时由于缝隙连接产生的误差,并提出在对这些细胞及其形成的网络进行建模时纠正这些误差的方法;(2)确定L2/3 LBCs的缝隙连接电导值(0.05 - 0.25 nS)和膜电阻率(10000 - 40000 Ω cm²);这些估计受到这些细胞的体外输入电阻(131 ± 18.5 MΩ)和耦合系数(1 - 3.5%)的严格限制;以及(3)探索缝隙连接的功能意义,并表明缝隙连接:(i)动态调节突触整合的有效时间窗口;(ii)提高轴突编码突触输入快速变化的能力;以及(iii)降低L2/3 LBCs的方向选择性、线性指数和相位差。我们的研究为缝隙连接的作用提供了新的见解,并呼吁在使用体外测量对电耦合神经元网络进行建模时要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9f2/4961030/9ae4685b595c/bhw16601.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验