Suppr超能文献

成纤维细胞-心肌细胞偶联对心脏传导和折返易感性的影响:一项计算研究。

Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study.

机构信息

Department of Medicine-Cardiology, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA.

出版信息

Heart Rhythm. 2009 Nov;6(11):1641-9. doi: 10.1016/j.hrthm.2009.08.003. Epub 2009 Aug 5.

Abstract

BACKGROUND

Recent experimental studies have documented that functional gap junctions form between fibroblasts and myocytes, raising the possibility that fibroblasts play roles in cardiac electrophysiology that extend beyond acting as passive electrical insulators.

OBJECTIVE

The purpose of this study was to use computational models to investigate how fibroblasts may affect cardiac conduction and vulnerability to reentry under different fibroblast-myocyte coupling conditions and tissue structures.

METHODS

Computational models of two-dimensional tissue with fibroblast-myocyte coupling were developed and numerically simulated. Myocytes were modeled by the phase I of the Luo-Rudy model, and fibroblasts were modeled by a passive model.

RESULTS

Besides slowing conduction by cardiomyocyte decoupling and electrotonic loading, fibroblast coupling to myocytes elevates myocyte resting membrane potential, causing conduction velocity to first increase and then decrease as fibroblast content increases, until conduction failure occurs. Fibroblast-myocyte coupling can also enhance conduction by connecting uncoupled myocytes. These competing effects of fibroblasts on conduction give rise to different conduction patterns under different fibroblast-myocyte coupling conditions and tissue structures. Elevation of myocyte resting potential due to fibroblast-myocyte coupling slows sodium channel recovery, which extends postrepolarization refractoriness. Owing to this prolongation of the myocyte refractory period, reentry was more readily induced by a premature stimulation in heterogeneous tissue models when fibroblasts were electrotonically coupled to myocytes compared with uncoupled fibroblasts acting as pure passive electrical insulators.

CONCLUSIONS

Fibroblasts affect cardiac conduction by acting as obstacles or by creating electrotonic loading and elevating myocyte resting potential. Functional fibroblast-myocyte coupling prolongs the myocyte refractory period, which may facilitate induction of reentry in cardiac tissue with fibrosis.

摘要

背景

最近的实验研究表明,成纤维细胞和心肌细胞之间形成功能性缝隙连接,这增加了成纤维细胞在心脏电生理中发挥作用的可能性,超出了作为被动电绝缘体的作用。

目的

本研究旨在利用计算模型研究在不同的成纤维细胞-心肌细胞偶联条件和组织结构下,成纤维细胞如何影响心脏传导和易发生折返的可能性。

方法

开发了具有成纤维细胞-心肌细胞偶联的二维组织计算模型并进行数值模拟。心肌细胞采用相位 I 的 Luo-Rudy 模型建模,成纤维细胞采用被动模型建模。

结果

除了通过心肌细胞去偶联和电紧张加载来减缓传导外,成纤维细胞与心肌细胞的偶联还会抬高心肌细胞的静息膜电位,导致传导速度先增加后减少,随着成纤维细胞含量的增加,直至传导失败。成纤维细胞-心肌细胞偶联还可以通过连接未偶联的心肌细胞来增强传导。成纤维细胞对传导的这些竞争作用导致在不同的成纤维细胞-心肌细胞偶联条件和组织结构下产生不同的传导模式。由于成纤维细胞-心肌细胞偶联导致心肌细胞静息电位升高,钠通道恢复减慢,从而延长复极后不应期。由于心肌细胞不应期延长,与作为纯被动电绝缘体的未偶联成纤维细胞相比,当成纤维细胞与心肌细胞电偶联时,在异质组织模型中,一个过早的刺激更容易诱发折返。

结论

成纤维细胞通过充当障碍物或通过产生电紧张加载和抬高心肌细胞静息电位来影响心脏传导。功能性成纤维细胞-心肌细胞偶联延长了心肌细胞不应期,这可能有助于纤维化心脏组织中折返的诱发。

相似文献

4

引用本文的文献

本文引用的文献

3
6
Three-dimensional transmural organization of perimysial collagen in the heart.心脏中肌束膜胶原蛋白的三维透壁组织。
Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1243-H1252. doi: 10.1152/ajpheart.00484.2008. Epub 2008 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验