Dong Yuqing, Liu Fusheng
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, China.
Int J Mol Sci. 2024 Dec 13;25(24):13396. doi: 10.3390/ijms252413396.
Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics. Our findings resolve a long-standing debate regarding the effect of fibroblast coupling on cardiomyocyte action potential duration (APD). We demonstrate that these seemingly contradictory outcomes are contingent upon the specific properties of the cardiomyocyte to which the fibroblast is coupled, particularly the relative magnitudes of the fast Na and transient outward K currents within the cardiomyocyte. Our results emphasize the critical importance of detailed ionic current representation in cardiomyocytes for accurately predicting the interactions between cardiomyocytes and fibroblasts in EHT. Surprisingly, complex ion channel-based models of fibroblast electrophysiology did not outperform simplified resistance-capacitance models in this analysis. Collectively, our findings highlight the promising potential of synergizing in vitro and in silico approaches to identify therapeutic targets for cardiomyopathies.
纤维化心肌病是一种严重的病理状况,其特征是心脏中的心肌细胞和成纤维细胞之间的相互作用,目前缺乏有效的治疗方法。体外平台,如通过心肌细胞和成纤维细胞共培养开发的工程心脏组织(EHT),正在研究中以阐明和操纵这些细胞间相互作用。我们首次将封装成纤维细胞 - 心肌细胞相互作用的数学电生理模型与实验性EHT研究相结合,以识别和调节控制这些动力学的离子通道。我们的研究结果解决了关于成纤维细胞耦合对心肌细胞动作电位时程(APD)影响的长期争论。我们证明,这些看似矛盾的结果取决于与成纤维细胞耦合的心肌细胞的特定特性,特别是心肌细胞内快速钠电流和瞬时外向钾电流的相对大小。我们的结果强调了心肌细胞中详细离子电流表示对于准确预测EHT中心肌细胞和成纤维细胞之间相互作用的至关重要性。令人惊讶的是,在该分析中,基于复杂离子通道的成纤维细胞电生理模型并不优于简化的电阻 - 电容模型。总体而言,我们的研究结果突出了协同体外和计算机方法以确定心肌病治疗靶点的有前景的潜力。