Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
Am J Physiol Lung Cell Mol Physiol. 2010 Feb;298(2):L232-42. doi: 10.1152/ajplung.00276.2009. Epub 2009 Nov 6.
Rho kinase (ROCK)-dependent vasoconstriction has been implicated as a major factor in chronic hypoxia (CH)-induced pulmonary hypertension. This component of pulmonary hypertension is associated with arterial myogenicity and increased vasoreactivity to receptor-mediated agonists and depolarizing stimuli resulting from ROCK-dependent myofilament Ca(2+) sensitization. On the basis of separate lines of evidence that CH increases pulmonary arterial superoxide (O(2)(-)) generation and that O(2)(-) stimulates RhoA/ROCK signaling in vascular smooth muscle (VSM), we hypothesized that depolarization-induced O(2)(-) generation mediates enhanced RhoA-dependent Ca(2+) sensitization in pulmonary VSM following CH. To test this hypothesis, we determined effects of the ROCK inhibitor HA-1077 and the O(2)(-)-specific spin trap tiron on vasoconstrictor reactivity to depolarizing concentrations of KCl in isolated lungs and Ca(2+)-permeabilized, pressurized small pulmonary arteries from control and CH (4 wk at 0.5 atm) rats. Using the same vessel preparation, we examined effects of CH on KCl-dependent VSM membrane depolarization and O(2)(-) generation using sharp electrodes and the fluorescent indicator dihydroethidium, respectively. Finally, using a RhoA-GTP pull-down assay, we investigated the contribution of O(2)(-) to depolarization-induced RhoA activation. We found that CH augmented KCl-dependent vasoconstriction through a Ca(2+) sensitization mechanism that was inhibited by HA-1077 and tiron. Furthermore, CH caused VSM membrane depolarization that persisted with increasing concentrations of KCl, enhanced KCl-induced O(2)(-) generation, and augmented depolarization-dependent RhoA activation in a O(2)(-)-dependent manner. These findings reveal a novel mechanistic link between VSM membrane depolarization, O(2)(-) generation, and RhoA activation that mediates enhanced myofilament Ca(2+) sensitization and pulmonary vasoconstriction following CH.
Rho 激酶 (ROCK) 依赖性血管收缩被认为是慢性低氧 (CH) 诱导肺动脉高压的一个主要因素。这种高血压的组成部分与动脉肌源性和增加血管反应性受体介导的激动剂和去极化刺激,由于 ROCK 依赖性肌丝 Ca(2+) 敏化。基于 CH 增加肺血管超氧化物 (O(2)(-)) 生成和 O(2)(-) 刺激血管平滑肌 (VSM) 中的 RhoA/ROCK 信号的独立证据,我们假设去极化诱导的 O(2)(-) 生成介导 CH 后肺 VSM 中增强的 RhoA 依赖性 Ca(2+) 敏化。为了验证这一假设,我们确定了 ROCK 抑制剂 HA-1077 和 O(2)(-) 特异性自旋陷阱 Tiron 对分离肺中和 KCl 去极化浓度下血管收缩反应性的影响,从对照和 CH(4 周,0.5 大气压)大鼠中分离出 Ca(2+) 可渗透、加压的小肺动脉。使用相同的血管制备物,我们分别使用尖锐电极和荧光指示剂二氢乙啶检测 CH 对 KCl 依赖性 VSM 膜去极化和 O(2)(-) 生成的影响。最后,使用 RhoA-GTP 下拉测定法,我们研究了 O(2)(-) 对去极化诱导的 RhoA 激活的贡献。我们发现,CH 通过 Ca(2+) 敏化机制增强了 KCl 依赖性血管收缩,该机制被 HA-1077 和 Tiron 抑制。此外,CH 引起 VSM 膜去极化,随着 KCl 浓度的增加而持续,增强了 KCl 诱导的 O(2)(-) 生成,并以 O(2)(-) 依赖性方式增强了去极化依赖性 RhoA 激活。这些发现揭示了 VSM 膜去极化、O(2)(-) 生成和 RhoA 激活之间的一种新的机制联系,这种联系介导了 CH 后增强的肌丝 Ca(2+) 敏化和肺血管收缩。