Suppr超能文献

软骨寡聚基质蛋白在低氧调节肺血管平滑肌超氧化物中的潜在作用。

Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia.

机构信息

Department of Physiology, Harbin Medical University-Daqing, Daqing, China.

Department of Physiology, New York Medical College, Valhalla, New York.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2019 Nov 1;317(5):L569-L577. doi: 10.1152/ajplung.00080.2018. Epub 2019 Aug 7.

Abstract

Changes in reactive oxygen species and extracellular matrix seem to participate in pulmonary hypertension development. Because we recently reported evidence for chronic hypoxia decreasing expression of cartilage oligomeric matrix protein (COMP) and evidence for this controlling loss of pulmonary arterial smooth muscle bone morphogenetic protein receptor-2 (BMPR2) and contractile phenotype proteins, we examined if changes in superoxide metabolism could be an important factor in a bovine pulmonary artery (BPA), organoid cultured under hypoxia for 48 h model. Hypoxia (3% O) caused a depletion of COMP in BPA, but not in bovine coronary arteries. Knockdown of COMP by small-interfering RNA (siRNA) increased BPA levels of mitochondrial and extra-mitochondrial superoxide detected by MitoSOX and dihydroethidium (DHE) HPLC products. COMP siRNA-treated BPA showed reduced levels of SOD2 and SOD3 and increased levels of NADPH oxidases NOX2 and NOX4. Hypoxia increased BPA levels of MitoSOX-detected superoxide and caused changes in NOX2 and SOD2 expression similar to COMP siRNA, and exogenous COMP (0.5 μM) prevented the effects of hypoxia. In the presence of COMP, BMPR2 siRNA-treated BPA showed increases in superoxide detected by MitoSOX and depletion of SOD2. Superoxide scavengers (0.5 μM TEMPO or mitoTEMPO) maintained the expression of contractile phenotype proteins calponin and SM22α decreased by 48 h hypoxia (1% O). Adenoviral delivery of BMPR2 to rat pulmonary artery smooth muscle cells prevented the depletion of calponin and SM22α by COMP siRNA. Thus, COMP regulation of BMPR2 appears to have an important role in controlling hypoxia-elicited changes in BPA superoxide and its potential regulation of contractile phenotype proteins.

摘要

活性氧和细胞外基质的变化似乎参与了肺动脉高压的发展。因为我们最近报道了慢性缺氧降低软骨寡聚基质蛋白(COMP)表达的证据,以及这种控制肺动脉平滑肌骨形态发生蛋白受体-2(BMPR2)和收缩表型蛋白丢失的证据,所以我们检查了超氧化物代谢的变化是否可能是一种重要因素在牛肺动脉(BPA)、在低氧(3% O)下培养 48 小时的类器官模型中。低氧(3% O)导致 BPA 中的 COMP 耗竭,但在牛冠状动脉中没有。小干扰 RNA(siRNA)下调 COMP 增加了通过 MitoSOX 和二氢乙啶(DHE)HPLC 产物检测到的 BPA 线粒体和线粒体外超氧化物的水平。用 COMP siRNA 处理的 BPA 显示 SOD2 和 SOD3 水平降低,NADPH 氧化酶 NOX2 和 NOX4 水平升高。低氧增加了 BPA 中通过 MitoSOX 检测到的超氧化物水平,并引起与 COMP siRNA 相似的 NOX2 和 SOD2 表达变化,外源性 COMP(0.5 μM)可预防低氧的影响。在存在 COMP 的情况下,BMPR2 siRNA 处理的 BPA 显示通过 MitoSOX 检测到的超氧化物增加,并且 SOD2 耗竭。超氧化物清除剂(0.5 μM TEMPO 或 mitoTEMPO)维持了由 48 小时低氧(1% O)引起的收缩表型蛋白 calponin 和 SM22α 的表达减少。腺病毒介导的 BMPR2 转染大鼠肺动脉平滑肌细胞可防止 COMP siRNA 引起的 calponin 和 SM22α 耗竭。因此,COMP 对 BMPR2 的调节似乎在控制 BPA 超氧化物和其对收缩表型蛋白潜在调节的缺氧诱导变化方面具有重要作用。

相似文献

1
Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia.
Am J Physiol Lung Cell Mol Physiol. 2019 Nov 1;317(5):L569-L577. doi: 10.1152/ajplung.00080.2018. Epub 2019 Aug 7.
2
Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterial smooth muscle cells.
Int J Biochem Cell Biol. 2017 Oct;91(Pt A):37-44. doi: 10.1016/j.biocel.2017.08.007. Epub 2017 Aug 30.
3
Endothelin-1 depletion of cartilage oligomeric matrix protein modulates pulmonary artery superoxide and iron metabolism-associated mitochondrial heme biosynthesis.
Am J Physiol Lung Cell Mol Physiol. 2022 Oct 1;323(4):L400-L409. doi: 10.1152/ajplung.00534.2020. Epub 2022 Aug 9.
4
Reduction of reactive oxygen species prevents hypoxia-induced CREB depletion in pulmonary artery smooth muscle cells.
J Cardiovasc Pharmacol. 2011 Aug;58(2):181-91. doi: 10.1097/FJC.0b013e31821f2773.
5
Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia.
Am J Physiol Lung Cell Mol Physiol. 2015 Feb 15;308(4):L368-77. doi: 10.1152/ajplung.00253.2014. Epub 2014 Nov 14.
6
Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1879-88. doi: 10.1152/ajpheart.01228.2009. Epub 2010 Mar 19.
7
Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2015 Apr 1;308(7):L719-28. doi: 10.1152/ajplung.00155.2014. Epub 2015 Feb 6.
10
Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension.
Circ Res. 2023 Mar 3;132(5):545-564. doi: 10.1161/CIRCRESAHA.121.320541. Epub 2023 Feb 6.

引用本文的文献

1
Signaling pathways and targeted therapy for pulmonary hypertension.
Signal Transduct Target Ther. 2025 Jul 1;10(1):207. doi: 10.1038/s41392-025-02287-8.
4
COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway.
Cardiovasc Toxicol. 2023 Oct;23(9-10):305-316. doi: 10.1007/s12012-023-09799-1. Epub 2023 Aug 16.
5
Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022 Dec 25;51(6):750-757. doi: 10.3724/zdxbyxb-2022-0282.
6
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities.
Int J Mol Sci. 2022 Aug 17;23(16):9253. doi: 10.3390/ijms23169253.
7
Endothelin-1 depletion of cartilage oligomeric matrix protein modulates pulmonary artery superoxide and iron metabolism-associated mitochondrial heme biosynthesis.
Am J Physiol Lung Cell Mol Physiol. 2022 Oct 1;323(4):L400-L409. doi: 10.1152/ajplung.00534.2020. Epub 2022 Aug 9.
8
Serum cartilage oligomeric matrix protein is decreased in patients with pulmonary hypertension: a potential protective factor.
Pulm Circ. 2021 Sep 28;11(4):0271678X20978861. doi: 10.1177/20458940211031111. eCollection 2021 Oct-Dec.
9
The Emerging Role of Fatty Acid Synthase in Hypoxia-Induced Pulmonary Hypertensive Mouse Energy Metabolism.
Oxid Med Cell Longev. 2021 Aug 17;2021:9990794. doi: 10.1155/2021/9990794. eCollection 2021.

本文引用的文献

1
Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterial smooth muscle cells.
Int J Biochem Cell Biol. 2017 Oct;91(Pt A):37-44. doi: 10.1016/j.biocel.2017.08.007. Epub 2017 Aug 30.
2
Potential role of mitochondrial superoxide decreasing ferrochelatase and heme in coronary artery soluble guanylate cyclase depletion by angiotensin II.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1439-47. doi: 10.1152/ajpheart.00859.2015. Epub 2016 Apr 1.
4
Heme biosynthesis modulation via δ-aminolevulinic acid administration attenuates chronic hypoxia-induced pulmonary hypertension.
Am J Physiol Lung Cell Mol Physiol. 2015 Apr 1;308(7):L719-28. doi: 10.1152/ajplung.00155.2014. Epub 2015 Feb 6.
5
Exposure of mice to chronic hypoxia attenuates pulmonary arterial contractile responses to acute hypoxia by increases in extracellular hydrogen peroxide.
Am J Physiol Regul Integr Comp Physiol. 2014 Aug 15;307(4):R426-33. doi: 10.1152/ajpregu.00257.2013. Epub 2014 Jun 11.
6
Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α.
Am J Physiol Lung Cell Mol Physiol. 2014 Feb 15;306(4):L383-91. doi: 10.1152/ajplung.00301.2013. Epub 2013 Dec 27.
7
Molecular pathogenesis of pulmonary arterial hypertension.
J Clin Invest. 2012 Dec;122(12):4306-13. doi: 10.1172/JCI60658. Epub 2012 Dec 3.
8
Glc-6-PD and PKG contribute to hypoxia-induced decrease in smooth muscle cell contractile phenotype proteins in pulmonary artery.
Am J Physiol Lung Cell Mol Physiol. 2012 Jul 1;303(1):L64-74. doi: 10.1152/ajplung.00002.2012. Epub 2012 May 11.
9
Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2295-304. doi: 10.1152/ajpheart.00624.2011. Epub 2011 Sep 16.
10
Oxidative injury is a common consequence of BMPR2 mutations.
Pulm Circ. 2011;1(1):72-83. doi: 10.4103/2045-8932.78107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验