Petersen L K, Sackett C K, Narasimhan B
Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
J Comb Chem. 2010 Jan-Feb;12(1):51-6. doi: 10.1021/cc900116c.
Controlled delivery of therapeutic protein drugs using biodegradable polymer carriers is a desired characteristic that enables effective, application-specific therapy and treatment. Previous studies have focused on protein delivery from polymers using conventional "one-sample-at-a-time" techniques, which are time-consuming and costly. In addition, many therapeutic proteins are in limited supply and are expensive, so it is desirable to reduce sample size for design and development of delivery devices. We have developed a rapid, high throughput technique based on a highly sensitive fluorescence-based assay to detect and quantify protein released from polyanhydrides while utilizing relatively small amounts of protein (approximately 40 microg). These studies focused on the release of a model protein, Texas Red conjugated bovine serum albumin, from polyanhydride copolymers based on sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)hexane (CPH). The protein release profiles were assessed simultaneously to investigate the effect of polymer device geometry (nanospheres vs films), polymer chemistry, and pH of the release medium. The results indicated that the nanosphere geometry, SA-rich chemistries, and neutral pH release medium led to a more rapid release of the protein compared to the film geometry, CPH-rich chemistries, and acidic pH release medium, respectively. This high throughput fluorescence-based method can be readily extended to study release kinetics for other proteins and polymer systems.
使用可生物降解的聚合物载体对治疗性蛋白质药物进行可控递送是一种理想的特性,它能够实现有效的、针对特定应用的治疗。先前的研究主要集中在使用传统的“一次一个样本”技术从聚合物中递送蛋白质,这些技术既耗时又昂贵。此外,许多治疗性蛋白质供应有限且价格昂贵,因此在递送装置的设计和开发中减少样本量是很有必要的。我们基于一种高灵敏度的荧光检测方法开发了一种快速、高通量的技术,用于检测和定量从聚酸酐中释放的蛋白质,同时使用相对少量的蛋白质(约40微克)。这些研究聚焦于一种模型蛋白质——德克萨斯红缀合牛血清白蛋白从基于癸二酸(SA)和1,6 - 双(对羧基苯氧基)己烷(CPH)的聚酸酐共聚物中的释放。同时评估蛋白质释放曲线,以研究聚合物装置几何形状(纳米球与薄膜)、聚合物化学组成以及释放介质pH值的影响。结果表明,与薄膜几何形状、富含CPH的化学组成以及酸性pH释放介质相比,纳米球几何形状、富含SA的化学组成以及中性pH释放介质分别导致蛋白质释放更快。这种基于高通量荧光的方法可以很容易地扩展到研究其他蛋白质和聚合物系统的释放动力学。