Suppr超能文献

基于聚酸酐纳米颗粒的线粒体靶向抗氧化疗法对神经元氧化损伤的保护作用。

Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy.

作者信息

Brenza Timothy M, Ghaisas Shivani, Ramirez Julia E Vela, Harischandra Dilshan, Anantharam Vellareddy, Kalyanaraman Balaraman, Kanthasamy Anumantha G, Narasimhan Balaji

机构信息

Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.

Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.

出版信息

Nanomedicine. 2017 Apr;13(3):809-820. doi: 10.1016/j.nano.2016.10.004. Epub 2016 Oct 19.

Abstract

A progressive loss of neuronal structure and function is a signature of many neurodegenerative conditions including chronic traumatic encephalopathy, Parkinson's, Huntington's and Alzheimer's diseases. Mitochondrial dysfunction and oxidative and nitrative stress have been implicated as key pathological mechanisms underlying the neurodegenerative processes. However, current therapeutic approaches targeting oxidative damage are ineffective in preventing the progression of neurodegeneration. Mitochondria-targeted antioxidants were recently shown to alleviate oxidative damage. In this work, we investigated the delivery of biodegradable polyanhydride nanoparticles containing the mitochondria-targeted antioxidant apocynin to neuronal cells and the ability of the nano-formulation to protect cells against oxidative stress. The nano-formulated mitochondria-targeted apocynin provided excellent protection against oxidative stress-induced mitochondrial dysfunction and neuronal damage in a dopaminergic neuronal cell line, mouse primary cortical neurons, and a human mesencephalic cell line. Collectively, our results demonstrate that nano-formulated mitochondria-targeted apocynin may offer improved efficacy of mitochondria-targeted antioxidants to treat neurodegenerative disease.

摘要

神经元结构和功能的渐进性丧失是许多神经退行性疾病的特征,包括慢性创伤性脑病、帕金森病、亨廷顿病和阿尔茨海默病。线粒体功能障碍以及氧化应激和硝化应激被认为是神经退行性过程的关键病理机制。然而,目前针对氧化损伤的治疗方法在预防神经退行性变进展方面无效。线粒体靶向抗氧化剂最近被证明可减轻氧化损伤。在这项研究中,我们研究了含有线粒体靶向抗氧化剂鱼藤酮的可生物降解聚酸酐纳米颗粒向神经元细胞的递送,以及该纳米制剂保护细胞免受氧化应激的能力。纳米制剂的线粒体靶向鱼藤酮在多巴胺能神经元细胞系、小鼠原代皮层神经元和人脑中脑细胞系中,针对氧化应激诱导的线粒体功能障碍和神经元损伤提供了出色的保护。总体而言,我们的结果表明,纳米制剂的线粒体靶向鱼藤酮可能会提高线粒体靶向抗氧化剂治疗神经退行性疾病的疗效。

相似文献

1
Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy.
Nanomedicine. 2017 Apr;13(3):809-820. doi: 10.1016/j.nano.2016.10.004. Epub 2016 Oct 19.
4
Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery.
J Biomed Mater Res A. 2018 Nov;106(11):2881-2890. doi: 10.1002/jbm.a.36477. Epub 2018 Oct 26.
6
Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction.
J Biomed Mater Res B Appl Biomater. 2022 Feb;110(2):450-459. doi: 10.1002/jbm.b.34922. Epub 2021 Jul 27.
7
Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance.
Nanomedicine (Lond). 2017 Feb;12(4):403-416. doi: 10.2217/nnm-2016-0342. Epub 2016 Dec 21.
8
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.
Neurochem Int. 2015 Oct;89:209-26. doi: 10.1016/j.neuint.2015.08.011. Epub 2015 Aug 24.
9
Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer's Disease.
ACS Nano. 2016 Feb 23;10(2):2860-70. doi: 10.1021/acsnano.5b08045. Epub 2016 Feb 10.
10
Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.
Biochem Biophys Res Commun. 2016 Sep 9;478(1):174-180. doi: 10.1016/j.bbrc.2016.07.071. Epub 2016 Jul 18.

引用本文的文献

2
Targeting respiratory virus-induced reactive oxygen species in airways diseases.
Eur Respir Rev. 2025 Apr 16;34(176). doi: 10.1183/16000617.0169-2024. Print 2025 Apr.
3
Inorganic Nanoparticles-based Drug Delivery Systems for Neurodegenerative Diseases Therapy.
Curr Pharm Des. 2025;31(25):1998-2024. doi: 10.2174/0113816128352935250116064725.
4
Mitochondrial targeted antioxidants as potential therapy for huntington's disease.
Pharmacol Rep. 2024 Aug;76(4):693-713. doi: 10.1007/s43440-024-00619-z. Epub 2024 Jul 9.
5
Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration.
Int J Nanomedicine. 2024 Jan 3;19:19-34. doi: 10.2147/IJN.S442775. eCollection 2024.
6
Mitochondrial-targeting MnO/UIO-TPP nanozyme scavenge ROS to restore mitochondrial function for osteoarthritis therapy.
Regen Biomater. 2023 Sep 1;10:rbad078. doi: 10.1093/rb/rbad078. eCollection 2023.
7
Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review.
Mar Drugs. 2023 Nov 16;21(11):594. doi: 10.3390/md21110594.
9
In vitro-in vivo assessments of apocynin-hybrid nanoparticle-based gel as an effective nanophytomedicine for treatment of rheumatoid arthritis.
Drug Deliv Transl Res. 2023 Nov;13(11):2903-2929. doi: 10.1007/s13346-023-01360-5. Epub 2023 Jun 7.
10
Therapeutic Potential of Nanomedicine in Management of Alzheimer's Disease and Glioma.
Int J Nanomedicine. 2023 May 22;18:2737-2756. doi: 10.2147/IJN.S405454. eCollection 2023.

本文引用的文献

3
Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery.
Annu Rev Biomed Eng. 2016 Jul 11;18:25-49. doi: 10.1146/annurev-bioeng-082615-030519. Epub 2016 Jan 18.
4
Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.
PLoS Negl Trop Dis. 2015 Oct 23;9(10):e0004173. doi: 10.1371/journal.pntd.0004173. eCollection 2015.
5
Nano-enabled delivery of diverse payloads across complex biological barriers.
J Control Release. 2015 Dec 10;219:548-559. doi: 10.1016/j.jconrel.2015.08.039. Epub 2015 Aug 24.
8
Neurodegenerative diseases in the era of targeted therapeutics: how to handle a tangled issue.
Mol Cell Neurosci. 2015 May;66(Pt A):1-2. doi: 10.1016/j.mcn.2015.03.002. Epub 2015 Mar 6.
9
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines.
Nanomedicine. 2015 Apr;11(3):715-29. doi: 10.1016/j.nano.2014.12.013. Epub 2015 Jan 31.
10
Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases.
Nanomedicine. 2015 Apr;11(3):751-67. doi: 10.1016/j.nano.2014.12.014. Epub 2015 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验