Vilela Rafael D, Lindner Benjamin
Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Str 38, 01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031909. doi: 10.1103/PhysRevE.80.031909. Epub 2009 Sep 21.
Stochastic integrate-and-fire (IF) neuron models have found widespread applications in computational neuroscience. Here we present results on the white-noise-driven perfect, leaky, and quadratic IF models, focusing on the spectral statistics (power spectra, cross spectra, and coherence functions) in different dynamical regimes (noise-induced and tonic firing regimes with low or moderate noise). We make the models comparable by tuning parameters such that the mean value and the coefficient of variation of the interspike interval (ISI) match for all of them. We find that, under these conditions, the power spectrum under white-noise stimulation is often very similar while the response characteristics, described by the cross spectrum between a fraction of the input noise and the output spike train, can differ drastically. We also investigate how the spike trains of two neurons of the same kind (e.g., two leaky IF neurons) correlate if they share a common noise input. We show that, depending on the dynamical regime, either two quadratic IF models or two leaky IFs are more strongly correlated. Our results suggest that, when choosing among simple IF models for network simulations, the details of the model have a strong effect on correlation and regularity of the output.
随机积分发放(IF)神经元模型在计算神经科学中有着广泛的应用。在此,我们给出了关于白噪声驱动的理想、漏电和二次型IF模型的结果,重点关注不同动力学状态(低噪声或中等噪声下的噪声诱导和强直发放状态)下的频谱统计(功率谱、互谱和相干函数)。我们通过调整参数使所有模型的平均发放率和峰峰间期(ISI)的变异系数相匹配,从而使这些模型具有可比性。我们发现,在这些条件下,白噪声刺激下的功率谱通常非常相似,而由一部分输入噪声与输出脉冲序列之间的互谱所描述的响应特性可能会有很大差异。我们还研究了如果两个同类神经元(例如,两个漏电IF神经元)共享一个共同的噪声输入,它们的脉冲序列是如何相关的。我们表明,根据动力学状态的不同,要么两个二次型IF模型,要么两个漏电IF模型的相关性更强。我们的结果表明,在为网络模拟选择简单的IF模型时,模型的细节对输出的相关性和规律性有很大影响。