Suppr超能文献

异构稀疏网络中脉冲序列功率谱的自洽方案

Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.

作者信息

Pena Rodrigo F O, Vellmer Sebastian, Bernardi Davide, Roque Antonio C, Lindner Benjamin

机构信息

Laboratório de Sistemas Neurais, Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.

Theory of Complex Systems and Neurophysics, Bernstein Center for Computational Neuroscience, Berlin, Germany.

出版信息

Front Comput Neurosci. 2018 Mar 2;12:9. doi: 10.3389/fncom.2018.00009. eCollection 2018.

Abstract

Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as indicated by comparison with simulation results of large recurrent networks. Our method can help to elucidate how network heterogeneity shapes the asynchronous state in recurrent neural networks.

摘要

脉冲神经元的循环网络可以处于一种异步状态,其特征是交叉相关性较低或不存在,且脉冲统计类似于皮层神经元的统计。尽管在这种状态下空间相关性可忽略不计,但神经元在其脉冲序列中可表现出明显的时间相关性,这种相关性可通过自相关函数或脉冲序列功率谱来量化。根据细胞和网络参数,相关性呈现出多样的模式(从简单的不应期效应、随机振荡到缓慢波动),而这些依赖性是如何产生的,人们通常还不太清楚。先前的工作探讨了如何从迭代单神经元模拟中数值确定均匀网络(具有近乎平衡的平均循环输入的兴奋性和抑制性积分发放神经元)中的单细胞相关性。这样一种方案基于这样一个事实,即每个神经元都由网络噪声驱动(即来自其所有突触前伙伴的输入电流),但也对网络噪声有贡献,从而导致输入和输出谱的自洽条件。在这里,我们首先将该方案扩展到具有强循环抑制和突触滤波器的均匀网络,其中通过平均过程避免了先前方案的不稳定性。然后,我们将该方案扩展到异质网络,其中(i)不同的神经亚群(例如,兴奋性和抑制性神经元)具有不同的细胞或连接参数;(ii)输入连接的数量和强度是随机的(厄多斯 - 雷尼拓扑),因此神经元之间各不相同。在所有异质情况下,神经元被归为不同的类别,每个类别在迭代方案中由单个神经元表示;此外,我们对神经元的输入电流进行高斯近似。与大型循环网络的模拟结果比较表明,这些近似在广泛的参数范围内似乎是合理的。我们的方法有助于阐明网络异质性如何塑造循环神经网络中的异步状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/5840464/7eae673a15ba/fncom-12-00009-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验