Vilela Rafael D, Lindner Benjamin
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany.
J Theor Biol. 2009 Mar 7;257(1):90-9. doi: 10.1016/j.jtbi.2008.11.004. Epub 2008 Nov 12.
Integrate and fire (IF) neurons have found widespread applications in computational neuroscience. Particularly important are stochastic versions of these models where the driving consists of a synaptic input modeled as white Gaussian noise with mean mu and noise intensity D. Different IF models have been proposed, the firing statistics of which depends nontrivially on the input parameters mu and D. In order to compare these models among each other, one must first specify the correspondence between their parameters. This can be done by determining which set of parameters (mu,D) of each model is associated with a given set of basic firing statistics as, for instance, the firing rate and the coefficient of variation (CV) of the interspike interval (ISI). However, it is not clear a priori whether for a given firing rate and CV there is only one unique choice of input parameters for each model. Here we review the dependence of rate and CV on input parameters for the perfect, leaky, and quadratic IF neuron models and show analytically that indeed in these three models the firing rate and the CV uniquely determine the input parameters.
积分发放(IF)神经元在计算神经科学中有着广泛的应用。这些模型的随机版本尤为重要,其中驱动因素由一个建模为具有均值μ和噪声强度D的白高斯噪声的突触输入组成。人们已经提出了不同的IF模型,其发放统计特性非平凡地依赖于输入参数μ和D。为了相互比较这些模型,首先必须指定它们参数之间的对应关系。这可以通过确定每个模型的哪一组参数(μ,D)与给定的一组基本发放统计特性相关联来实现,例如发放率和峰峰间隔(ISI)的变异系数(CV)。然而,对于给定的发放率和CV,每个模型是否只有一组唯一的输入参数选择,从先验角度来看并不明确。在这里,我们回顾了完美、漏电和二次IF神经元模型中发放率和CV对输入参数的依赖性,并通过分析表明,在这三个模型中,发放率和CV确实唯一地确定了输入参数。